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ABSTRACT 

 

Deep brain stimulation (DBS) is a successful clinical therapy for a wide range 

of neurological disorders; however, the physiological mechanisms of DBS 

remain unresolved. While many different hypotheses currently exist, our 

analyses suggest that high frequency (130 Hz) stimulation-induced synaptic 

suppression represents the most basic concept that can be directly reconciled 

with experimental recordings of spiking activity in neurons that are being driven 

by DBS inputs. 

The goal of this project was to develop a simple model system to characterize 

the excitatory post-synaptic currents (EPSCs) and action potential signaling 

generated in a neuron that is strongly connected to pre-synaptic glutamatergic 

inputs that are being directly activated by DBS. 

We used the Tsodyks-Markram (TM) phenomenological synapse model to 

represent depressing, facilitating, and pseudo-linear synapses driven by DBS 

over a wide range of stimulation frequencies. The EPSCs were then used as 

inputs to a leaky integrate-and-fire neuron model (LIF) and later to a memristor 

leaky integrate-and-fire neuron model (MLIF) in order to measure the DBS-

triggered post-synaptic spiking activity. 

The result we obtained is that the synaptic suppression was a robust feature of 

high frequency stimulation, independent of the synapse type and MLIF neuron 

model exhibits greater spiking activity than LIF neuron model. 
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CHAPTER 1 

NON-LINEAR DYNAMICS 

 

1.1 Dynamical systems 

Dynamical systems are found all around us. A dynamical system is a system 

whose state is distinctively specified by a set of variables and whose behavior is 

outlined by certain predefined rules. Some examples of dynamical systems are 

population growth, a swinging pendulum, the motions of celestial bodies, and 

the behavior of “rational” individuals playing a negotiation game, to name a 

few. If you assume that individuals make decisions always perfectly rationally, 

then the decision making process becomes deterministic, and therefore the 

interactions among them may be modeled as a deterministic dynamical system. 

Of course, this doesn’t guarantee whether it is a good model or not [1]. The 

main reason behind studying dynamic systems is to predict system behavior and 

to control it. 

Dynamical systems first developed from the geometry of Newton’s equations 

and the question of the stability of the solar system motivated further researches 

inspired by celestial mechanics. Then dynamical systems developed intensively 

from stability theory (Lyapunov’s theory) to generic properties (based on 

functional analysis techniques,) hyperbolic structures and to perturbation theory 

[2]. 

Dynamical systems are deterministic mathematical models, where time can be 

either a continuous or a discrete variable. Both qualitative and quantitative 

properties of such models are of interest to researchers [3]. Dynamical 

systems are usually studied in order to figure out their complex behaviors such 

as chaos, hyperchaos, transient chaos, bursting oscillations, mixed mode 

oscillations, multistability and extreme multistability [4]. 

The equations representing a dynamical system describe the change in time of 

variables taken to adequately describe the target system and these equations are 

referred to as dynamical or evolution equations.  A complete specification of the 

initial state of such equations is referred to as the initial conditions for the 

model, while a characterization of the boundaries for the model domain are 

https://www.sciencedirect.com/topics/physics-and-astronomy/dynamical-systems
https://www.sciencedirect.com/topics/physics-and-astronomy/celestial-mechanics
https://www.sciencedirect.com/topics/physics-and-astronomy/dynamical-systems
https://www.sciencedirect.com/topics/mathematics/sigma-property
https://www.sciencedirect.com/topics/physics-and-astronomy/perturbation-theory
https://www.sciencedirect.com/topics/physics-and-astronomy/dynamical-systems
https://www.sciencedirect.com/topics/physics-and-astronomy/dynamical-systems
https://www.sciencedirect.com/topics/physics-and-astronomy/oscillations
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known as the boundary conditions. A simple example of a dynamical system 

would be the equations modelling a particular chemical reaction, where a set of 

equations relates the temperature, pressure, amounts of the various compounds 

and their reaction rates. The boundary condition might be that the container 

walls are maintained at a fixed temperature. The initial conditions would be the 

starting concentrations of the chemical compounds. The dynamical system 

would then be taken to describe the behavior of the chemical mixture over time 

[3]. 

The variables that completely describe the state of the dynamical system are 

called the state variables. The set of all the possible values of the state variables 

is the state space. An instantaneous state is taken to be characterized by the 

instantaneous values of the variables considered crucial for a complete 

description of the state. The state space can be discrete, consisting of isolated 

points, such as if the state variables could only take on integer values. It could 

be continuous, consisting of a smooth set of points, such as if the state variables 

could take on any real value. The number of state variables is the dimension of 

the dynamical system. The state space can also be infinite-dimensional. When 

the state of the system is fully characterized by position and momentum 

variables, the resulting space is often called a phase space. A model can be 

studied in state space by following its trajectory, which is a history of the 

model's behavior in terms of its state transitions from the initial state to 

some chosen final state [3, 4]. 

 

 

1.2   Linearity Versus Non linearity 

Linear systems are rare in nature. A linear system is one in which the cause 

produces a constant proportionality effect. The dynamics of a linear system can 

be reconstructed by summing up the individual causes acting on a single 

component. Small initial errors in prediction or from a random measurement 

grow linearly over time. Linear phenomena are concerned with inter 

relationship between cause and effect, which can be determined with great 

accuracy. 

A linear system can be characterized in several different ways. Its dynamics can 

be represented by a system of linear differential equations (for continuous-time 

systems) or linear difference equations (for discrete-time systems). It has a 

https://mathinsight.org/definition/state_variable
https://mathinsight.org/definition/state_space
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transfer function and obeys the law of superposition. A sinusoidal input 

produces a sinusoidal output of the same frequency. One of the most common 

ways to test for a system’s linearity is by verifying if it follows the law of 

superposition. Superposition is composed of two parts, scaling and additively. 

Nonlinear systems are ubiquitous in nature. A nonlinear system is simply one 

that is not linear. However, there are several reasons why a system might be 

nonlinear, and different classes of nonlinearities come about because of 

different physical reasons. 

 

1.3 Nonlinear systems 

A nonlinear system is a system in which the variation in the output is 

not proportional to the variations occurring in the input. As most real physical 

systems are inherently nonlinear in nature, nonlinear systems are of great 

interest to physicists, engineers and mathematicians [5]. For a nonlinear system 

a small change in a parameter may cause sudden and dramatic changes, 

resulting in a complex and unpredictable trajectory. A curve for a nonlinear 

system consists of a smooth curve, wiggles, an abrupt cut-off or any number of 

different types of lines. That is a nonlinear system can be considered as a sum of 

its parts. A small initial error in prediction or from a random measurement 

grows exponentially over time. A large scale deviation and huge unpredictable 

effects can take place from small initial changes. 

 

The behavior of a nonlinear system is described in mathematics by a nonlinear 

system of equations. In a nonlinear system of equations, the equation(s) to be 

solved cannot be written as a linear combination of the 

unknown variables or functions that appear in them. Non-linear dynamic 

systems do not obey superposition principle. They have multiple isolated 

equilibrium points. The state of an unstable nonlinear system can reach up to 

infinity in finite time [6]. Nonlinear equations are difficult to be solved by 

analytical methods and give rise to interesting phenomena such as bifurcation, 

limit cycle and chaos. 

The purpose of nonlinear dynamic systems is twofold. To begin with, it serves 

as an instrument to analyze information (e.g., EEG rhythms, eye developments, 

and so on). Second, it is utilized to show the various areas being scrutinized 

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Proportionality_(mathematics)
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(from neuroscience to imagination). Time and change are the two factors behind 

the strength of the nonlinear dynamic systems approach [7]. Nonlinearity might 

stay inactive or, lead to subjective changes of conduct contingent upon the 

values of the control parameters portraying the manner in which a framework 

has been at first ready or is being permanently requested by the external world 

[8]. 

 

1.4 Characteristics of nonlinear systems 

1.4.1 Limit cycle 

One peculiar behavior exhibited by nonlinear systems is a limit cycle. Although 

linear systems may oscillate, this oscillatory behavior cannot be explained in 

terms of linear theory. It is characterized by a constant amplitude and frequency 

determined by the nonlinear properties of the system irrespective of the initial 

conditions, external data inputs, or perturbations [9, 10]. 

 

A limit cycle is a closed trajectory in phase space exhibiting the  property that at 

least one other trajectory spirals into it either as time approaches infinity or as 

time approaches negative infinity [10]. A limit cycle is said to be asymptotic 

stable if all trajectories nearby the limit cycle converge to it ast → ∞. Otherwise 

the limit cycle is said semi-stable or unstable, that is, all neighboring trajectories 

approach it as time approaches negative infinity [11]. 

Stable limit cycles are vital scientifically, since they model systems that display 

self-sustained oscillations, for example systems which oscillate even without 

any external driving force (e.g. thumping of a heart, rhythms in body heat level, 

chemical discharge). In the event that the system is perturbed marginally, it 

always gets back to the stable limit cycle. If a system has a stable limit cycle, 

the system will tend to fall into the limit cycle, with the output approaching the 

amplitude of that limit cycle regardless of the initial condition and forcing 

function. 

 

https://www.sciencedirect.com/topics/engineering/closed-trajectory
https://www.sciencedirect.com/topics/engineering/spiral-trajectory
https://www.sciencedirect.com/topics/engineering/stable-limit-cycle
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Fig. 1.1 Different types of Limit cycles 

 

1.4.2 Bifurcation 

As we mentioned earlier, a system’s nonlinearities are not awakened gradually 

rather it involves a succession of explosive events in the form of instabilities. 

When the constraints exerted by environment reach certain threshold, small 

perturbation or small spontaneously arising fluctuations become amplified the 

system moves out from its basic state and is pushed toward a new regime called 

bifurcation.  

Bifurcation in a nonlinear system can be defined as a change in behavior 

resulting from a small change in a parameter. By behavior, we mean a change in 

the number equilibrium points, a change in the type of equilibrium points 

(stable or unstable), or the emergence of a limit cycle. By small change in a 

parameter, we mean that there is a threshold above which the system exhibits 

one type of behavior and below it exhibits another [9]. 

When the initial state become unstable, it is replaced by a multitude of stable 

regimes that are accessible simultaneously. To decide which particular branch 

will be followed is decided by chance in the form of critical variation at that 

moment. This makes the system sensitive to parameters which controls the 

position of bifurcation point since two macroscopically indiscernible systems at 

same constraints follow entirely different path. 

As system undergoes not just a single transition but a whole sequence of 

transition as the constraints are varied and its characteristics depend on the 

nature of nonlinearities present. One such phenomenon is deterministic chaos, 

where the transition eliminates in regime which is characterized by as irregular 

evolution of the variables in space and time. 
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1.4.3 Chaos 

Chaos is the phenomenon of occurrence of bounded non periodic evolution, 

deterministic but not predictable, nonlinear dynamical systems with very high 

sensitive dependence on initial conditions. If we begin a system at two different 

initial conditions then the trajectories resulting from each initial condition may 

be extremely different from each other. Whereas in linear systems, two initial 

conditions that start close to each other will have trajectories that behave 

similarly and stay relatively close to each other. 

 

The idea of Chaos theory was acquainted with the cutting edge world by 

Edward Lorenz in 1972 with conceptualization of “Butterfly Effect”. A 

butterfly flapping its wings causes a hurricane on the other side of the world. 

The relatively small amplitude of butterfly wings is equivalent to a small change 

in initial condition. Surely a butterfly can’t have much of an effect on 

atmospheric conditions. But even this small change is enough to make the 

difference between a nice sunny day and a storm (weather trajectory) in another 

part of the world. Knowledge of this hypothesis will assist with making a 

complex system more predictable [9].  

 

In theoretical physics, chaos is a kind of moderated randomness that, unlike true 

randomness, contains complex patterns that are mostly unknown. The first 

evidence for an underlying design in chaos was observed by American physicist 

Mitchell Feigenbaum, who in 1976 discovered that when an ordered system 

begins to break down into chaos, a consistent pattern of rate doubling occurs 

[1]. In 1975, Yorke and Li showed a sustained periodic behavior could be found 

in 1-D maps. They coined the term chaos for the various phenomena that 

showed a periodicity along with sensitive dependence on initial conditions. In 

addition to showing that the existence of a periodic three orbit in 1-D 

continuous map implies sensitive dependence, they showed another remarkable 

consequence: the existence of infinitely many other periodic orbits.  

 

If the equations governing a chaotic system and the initial conditions are 

known, then the behavior can be predicted by simple iteration. In practice, 

however, the initial condition can never be specified to 100% accuracy. This 

initial uncertainty, coupled with the sensitive dependence, means that such 

attempts at prediction are futile. 
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Other hallmarks of chaos include the existence of a dense set of unstable 

periodic orbits in its regime[12], positive Lyapunov exponents or finite 

Kolmogorov-Sinai entropy[13], continuous power spectrum, non-ergodicity, 

mixing (Arnold’s cut map), as well as some other limiting properties [1]. 

Chaos is “ubiquitous”. Interesting chaotic dynamical systems include: 

 Hamiltonian systems of many different kinds, 

 Digital filters, electrical and electronics systems, 

 Celestial mechanics (the three-body problem), 

 Laser, plasmas, solid state, and quantum mechanics, 

 Nonlinear optics, 

 Chemical reactions, 

 Power systems, 

 Neural networks, 

 Economic behaviour, and 

 Biological systems (heart, brain, population, etc.). 

 

 

 

Fig.1.2 Trajectories in a chaotic system may diverge from each other even if the 

initial conditions are close. 
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1.5 Characterization of nonlinear systems 

Consider a system with finite set of observables such as temperature, chemical 

composition, flow velocity, pressure etc. The evolution into the abstract space 

spanned by all these variables is phase space. In this space, an instantaneous 

state of the system is represented by a point. As the time goes on, the point 

follows a curve called phase trajectory. By following these trajectories from 

different initial states, a phase portrait is obtained which provides a valuable 

qualitative idea of system potentialities. For every natural system the phase 

trajectory will converge to an object in phase space which is referred to as the 

attractor. 

 

In recent years, it has been realized that ordinary systems obeying nonlinear 

laws leads to complexity associated with abrupt transitions, multiplicity of 

states referred to as deterministic chaos. Thermal convection in a fluid layer 

heated from below, turbulence etc. provide well established example of property 

of nonlinear systems which is referred to as self-organization. The self-

organization become a powerful tool for analyzing complex systems, mainly 

biological systems and systems encountered in environmental science. 
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CHAPTER - 2 

NEURAL NETWORK 

 

2.1 What is a neuron? 

Human brain consists of neurons or nerve cells which transmit and process the 

information received from our senses. They use electrical impulses and 

chemical signals to transmit information between different areas of the brain, 

and between the brain and the rest of the nervous system. Everything we think 

and feel and do would be impossible without the work of neurons and their 

support cells, the glial cells [14]. Many such nerve cells are arranged together in 

our brain and they form a network of nerves. They pass electrical impulses i.e. 

the excitation from one neuron to the other. 

The dendrites receive the impulse from synapse of an adjoining neuron. These 

dendrites carry the impulse to the nucleus of the nerve cells which is called as 

soma. The electrical impulse is processed here and the passed on to the axon. 

The axon is the longer branch among the dendrites which carries the impulse 

from the soma to the synapse. The synapse then passes the impulse to dendrites 

of the second neuron. A complex network of neuron is thus created in the 

human brain. 

 

Fig. 2.1 Structure of a Neuron 
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The basic building block of the brain and central nervous system is the neuron. 

They are specialized cells that transmit chemical and electrical signals. The 

brain is made up of neurons and glial cells. Glial cells are non-neuronal cells 

which provide structure and support for the neurons. Nearly there are 86 billion 

neurons work together within the nervous system to communicate with the rest 

of the body. They control everything from consciousness and thought to pain 

and hunger. There are three primary types of neuron: sensory neurons, motor 

neurons and inter-neurons. 

 Sensory neurons respond to stimuli such as touch, sound, or light that affect the 

cells of the sensory organs, and they send signals to the spinal cord or brain.  

Motor neurons receive signals from the brain and spinal cord to control 

everything from muscle contractions to glandular output.  

Inter-neurons connect neurons to other neurons within the same region of the 

brain or spinal cord. When multiple neurons are connected together they form 

what is called a neural circuit. 

 

2.2 Structure of neuron 

Neurons contain unique structure for receiving and sending the electrical signals 

that make neuronal communication possible. They consist of a nucleus, cell 

body, axon, dendrite and a myelin sheath. 

Dendrite  

Dendrites are branch-like structure extending away from the cell body. Their 

job is to receive message from other neurons and allow those messages to travel 

to the cell body. Although some neurons do not have any dendrites, other types 

of neurons have multiple dendrites. 

Cell Body 

Each neuron has a cell body (or soma) that contains a nucleus, smooth and 

endoplasmic reticulum, Golgi apparatus, mitochondria, and other cellular 

components. They control the functions of a cell. They contain different 

organelles which help them to do its job. 
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Axon 

An axon is a tube like structure that carries an electrical impulse from the cell 

body (or from another cell’s dendrites) to the structure at opposite end of the 

neuron i.e. axon terminals, which then pass the impulse to another neuron. 

Synapse 

The synapse is a chemical junction between the axon terminals of one neuron 

and the dendrites of the next. It is a gap where chemical interactions can occur. 

Its function is to transfer electrical activity (information) from one cell to 

another. 

 

2.3 What is synapse? 

"Coming together" is the meaning of the word synapse. A synapse is formed 

when two structures or entities come together. Although the term synapse can 

refer to any cellular junction, it is most commonly used in physiology to refer to 

the junction of two neurons, the junction of a neuron and a target cell (ex. the 

neuromuscular junction), or the interface between adjacent cardiac muscle cells 

or adjacent smooth muscle cells. A synapse is a structure in the nervous system 

that permits a neuron to send an electrical or chemical signal to another cell. 

Synapse cell 

The presynaptic cell is the cell that sends the signal to the synapse. The 

postsynaptic cell is the cell that receives the signal after it crosses the synapse. 

A postsynaptic neuron at one synapse may become the presynaptic neuron for 

another cell downstream since most brain pathways contain several neurons. 

With a postsynaptic neuron, a presynaptic neuron can make one of three types 

of synapses. The axon of the presynaptic neuron synapses with a dendrite of the 

postsynaptic neuron in an axodendritic synapse, which is the most frequent form 

of synapse. An axosomatic synapse occurs when the presynaptic neuron 

synapses with the postsynaptic neuron's soma, while an axoaxonic synapse 

occurs when it synapses with the postsynaptic cell's axon. 
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Synapse Transmission 

In your body, there are two types of synapses: electrical and chemical. Electrical 

synapses allow ions and signalling molecules to move directly from one cell to 

the next. Chemical synapses, on the other hand, do not transmit signals directly 

from the presynaptic cell to the postsynaptic cell. An action potential in the 

presynaptic neuron causes the release of a chemical message known as a 

neurotransmitter in a chemical synapse. The neurotransmitter then diffuses 

across the synapse and binds to postsynaptic cell receptors. When a 

neurotransmitter binds to a receptor, an electrical signal is produced in the 

postsynaptic cell. Each type of synapse has functional advantages and 

disadvantages. 

Electrical synapse: 

The signal is passed through electrical synapse very fast, allowing groups of 

cells to act in unison. The direct flow of electrical current at gap junctions 

transmits action potentials in electrical synapses. When the trans-membrane 

pores of two neighboring cells align, a gap junction is produced. The two cells' 

membranes are joined together, and the matched pores create a pathway 

between them. As a result, various chemicals and ions are permitted to flow 

between the cells. Electrical synapses facilitate bidirectional information flow 

between cells due to the direct passage of ions and molecules from one cell to 

another. The function of cardiac myocytes and smooth muscles is dependent on 

gap junctions. 

Chemical synapse: 

Chemical synapses allow neurons to integrate information from many 

presynaptic neurons, determining whether or not the postsynaptic cell will 

continue to propagate the signal. Multiple chemical synapses send information 

to neurons, which causes them to respond differently. The majority of synapses 

in your body are chemical synapses. A synaptic gap or cleft separates the pre- 

and postsynaptic cells in a chemical synapse. When an action potential is 

transmitted to the axon terminal, the axon terminals secrete chemical 

messengers known as neurotransmitters. Neurotransmitter molecules go across 

the synaptic cleft and bind to receptor proteins on the postsynaptic cell's cell 

membrane. The neurotransmitter binds to the receptors on the postsynaptic cell, 

causing a brief shift in the membrane potential of the postsynaptic cell [15]. 
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2.4 Neurotransmitters and Action potential 

Neurotransmitters 

The chemical messengers of the body are typically referred to as 

neurotransmitters. They are the chemicals that the nervous system uses to send 

and receive messages between neurons and between neurons and muscles.  

The synaptic cleft is where two neurons communicate with one another (the 

small gap between the synapses of neurons). The release of neurotransmitters 

converts electrical messages that have travelled along the axon into chemical 

signals, generating a specific reaction in the receiving neuron. A 

neurotransmitter can have one of three effects on a neuron: excitatory, 

inhibitory, or modulatory. 

In the receiving neuron, an excitatory transmitter encourages the formation of 

an electrical signal known as an action potential, whereas an inhibitory 

transmitter prevents it. The receptor to which a neurotransmitter binds 

determines whether it is excitatory or inhibitory. 

Neuromodulators are unique in that they are not limited to the synaptic cleft 

between two neurons and can therefore affect a large number of neurons 

simultaneously. Neuromodulators, in contrast to excitatory and inhibitory 

transmitters, influence populations of neurons while functioning at a slower rate 

[16].  

 

Fig. 2.2 Synapse model 
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Action Potential 

The cell membrane (the border between the interior and outside of a cell) 

contains many channels that allow positive and negative ions to flow into and 

out of the cell. The inside of a cell is normally more negative than the exterior; 

neuroscientists estimate that the inside is roughly -70 mV in comparison to the 

outside, or that the cell's resting membrane potential is -70 mV. The potential of 

the membrane isn't constant. It fluctuates regularly, primarily because to inputs 

from other neurons' axons. Some inputs cause the membrane potential of the 

neuron to become more positive (or less negative, for example, from -70 mV to 

-65 mV), whereas others have the reverse effect. 

Because they encourage or inhibit the formation of action potentials, these are 

referred to as excitatory and inhibitory inputs, respectively (the reason some 

inputs are excitatory and others inhibitory is that different types of neuron 

release different neurotransmitters; the neurotransmitter used by a neuron 

determines its effect). The sum total of all excitatory and inhibitory inputs 

causes the neuron's membrane potential to hit roughly -50 mV (see diagram), 

which is known as the action potential threshold. 

Action potentials are commonly referred to as 'spikes' by neuroscientists, who 

also remark that a neuron has 'fired a spike' or 'spiked.' The shape of an action 

potential as recorded with sensitive electrical equipment is referred to by this 

word [17]. 

 

2.5 Communication of Neurons 

Neurons communicate with one another via synapses. Neurotransmitter is 

released from the neuron into the synaptic cleft, a 20–40nm space between the 

presynaptic axon terminal and the postsynaptic dendrite, when an action 

potential reaches the presynaptic terminal (often a spine). 

The transmitter will attach to neurotransmitter receptors on the postsynaptic side 

after crossing the synaptic cleft, and depending on the neurotransmitter released 

(which is dependent on the type of neuron releasing it), specific positive (e.g. 

Na+, K+, Ca+) or negative ions (e.g. Cl-) will travel through membrane 

channels. 



16 
 

Synapses can be thought of as converting an electrical signal (the action 

potential) into a chemical signal in the form of neurotransmitter release, and 

then switching the signal back into an electrical form as charged ions flow into 

or out of the postsynaptic neuron after the transmitter binds to the postsynaptic 

receptor [17]. 

 

Fig. 2.3 An action potential, or spike, causes neurotransmitters to be released 

across the synaptic cleft, causing an electrical signal in the postsynaptic neuron 
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CHAPTER 3 

REVIEW OF BRAIN STIMULATION  

 

3.1 Deep Brain Stimulation 

Deep brain stimulation (DBS) is a neurosurgical operation that employs 

electrical stimulation and implanted electrodes to treat movement disorders such 

as Parkinson's disease (PD), essential tremor, dystonia, and other neurological 

illnesses. It can also be used to manage obsessive-compulsive disorder and 

epilepsy symptoms [18]. When drugs are no longer effective or their negative 

effects interfere with a person's everyday activities, doctors may utilize DBS to 

treat movement disorders or neuropsychiatric diseases. 

 During a surgical operation, surgeons implant one or more small wires 

(called leads or electrodes) in the brain. 

 A tiny pulse generator implanted in the chest provides gentle electrical 

stimulation to the leads. 

 Successful DBS surgery necessitates careful patient selection, precise 

electrode insertion, and pulse generator modification. 

 DBS cannot completely alleviate the symptoms of Parkinson's disease or 

other illnesses, but it can help patients take fewer medications and have a 

better quality of life. 

Deep brain stimulation (DBS) has changed the treatment of late-stage 

Parkinson's disease and has shown promise in the treatment of other intractable 

neuropsychiatric illnesses. Despite over 25 years of clinical experience, many 

concerns about the neurophysiological basis for therapeutic mechanisms of 

action remain unanswered. Electrical stimulation therapies in the nervous 

system are designed to manipulate the opening and closing of voltage-gated 

sodium channels on neurons, generate stimulation induced action potentials, and 

then control the release of neurotransmitters in targeted pathways using an 

applied electric field. 
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Fig. 3.1 Structural representation of DBS 

 

Deep brain stimulation is a useful clinical tool, although the precise treatment 

mechanisms are unknown. The most basic concept that can be directly 

reconciled with experimental recordings of spiking activity in neurons driven by 

DBS inputs is that high frequency (100 Hz) stimulation-induced synaptic 

suppression represents the most basic concept that can be directly reconciled 

with high frequency (100 Hz) stimulation-induced synaptic suppression [19]. 

Given that therapeutic stimulation methods typically use a constant stimulation 

frequency, the steady-state PSC generated at the synapse as a function of 

stimulation frequency is a significant parameter of interest. Low stimulation 

frequencies (e.g., 10 Hz) can maintain high amplitude PSCs for lengthy periods 

of time, whereas high stimulation frequencies (e.g., 100 Hz) reduce PSCs 

immediately after the stimulus train begins. 

In most in DBS experiments, communication between the directly stimulated 

pre-synaptic neuron and a tightly linked post-synaptic neuron does not 

completely stop. Instead, with high frequency stimulation, signal transmission, 

which is strong during low frequency stimulation, becomes sporadic and low 



19 
 

fidelity, despite remaining time-locked to the stimulus train. This shows that 

DBS changes the dynamics of these synaptic connections, and that 100 Hz 

stimulation acts as a filter, preventing low-frequency oscillatory activity of pre-

synaptic neurons from impacting their post-synaptic neurons [20]. 

The general phenomena of DBS-induced synaptic suppression may be studied 

most easily at glutamatergic synapses [21, 22], where there is a wealth of 

experimental data to parameterize synaptic models and post-synaptic neurons 

can be monitored for synaptically generated APs time-locked to the stimuli. 

There are several types of glutamatergic synapses, including depressing, 

facilitating, and pseudo-linear. As a result, we set out to determine how these 

various synapse types respond to DBS. 

Here, Tsodyks-Markram (TM) phenomenological synapse model to represent 

depressing (D), facilitating (F), and pseudo-linear (P) glutamatergic synapses 

driven by DBS over a wide range of stimulation frequencies. 

 

3.2  Tsodyks-Markram (TM) model 

Short-term synaptic plasticity strongly affects the neural dynamics of cortical 

networks. The Tsodyks and Markram (TM) model for short-term synaptic 

plasticity accurately accounts for a wide range of physiological responses at 

different types of cortical synapses. 

To quantify the dynamic behaviour of glutamatergic synapses driven by DBS-

induced action potentials, here employed the Tsodyks-Markram (TM) 

phenomenological model of short-term synaptic plasticity. Short-term 

depression (related with neurotransmitter depletion) and short-term facilitation 

(associated with calcium influx into the pre-synaptic terminal) can both be 

simulated using TM models. The dynamics of the TM model arise from the 

combination of a depression effect, denoted by normalized variable x, which 

represents the fraction of neurotransmitter resources that remain available after 

synaptic transmission, and a facilitation effect modeled by utilization parameter 

u that represents the fraction of available neurotransmitter resources ready to be 

used (Fig. 2). As such, u is consumed to produce the postsynaptic current, I. The 

combination of the depression and facilitation effects, as well as the time delay, 

D, yields the following differential equations: 
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where; 

 𝑡𝑠 – spike time 

 𝛿 – Dirac delta function 

 𝑈 – Increment of u produced by an incoming spike 

 𝜏𝑓 – decay time constant of variable u 

 𝜏𝑑 – recovery time constant of variable x 

 𝜏𝑠 – decay time constant of variable of I 

 𝐴 – denotes the synaptic response amplitude that would be produced with 

the release of all neurotransmitter resources 

The specific parameter values for the D, F, and P synapses are listed below, 

which were previously defined to match the experimentally measured 

characteristics of intracortical glutamatergic EPSCs. 

 

Synapse 𝜏𝑓(𝑚𝑠) 𝜏𝑑(𝑚𝑠) 𝜏𝑠(𝑚𝑠) U 𝐴(𝜇𝑠) 

F 670 138 3 0.09 2.5 

D 17 671 3 0.5 2.5 

P 326 329 3 0.29 2.5 
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3.3 Obtained synaptic response to DBS 

 

Fig 3.2 shows the EPSC generated by each of the F,D and P synapses for 20HZ 

and 130Hz. 

 

Fig 3.3 EPSC amplitude Vs Frequency plot 
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Fig 3.4 Area under 1EPSC 

 

Fig 3.5 Area under EPSCs in 1 second of stimulation 

 

Low frequency stimulation can produce a wide range of EPSCs, depending on 

the type of synapse (depressing (D), facilitating (F), or pseudo-linear (P)), as 

well as the timing of when the EPSC is evaluated throughout the stimulus train, 
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according to simulations of the TM synaptic model. The number of available 

transmission resources, x, for a D synapse stimulated at 20 Hz decays with a 

fast time constant. EPSCs are initially very strong, but in the steady-state, they 

degrade to a modest amplitude.  

F synapses stimulated at 20 Hz, on the other hand, have an x that does not 

decrease rapidly because the utilisation fractions, u, are less. As a result, EPSCs 

start out small but grow in size with time to reach a larger amplitude in the 

steady-state. Under high frequency driving, however, both the F and D synapses 

show a similar tendency of steady-state EPSC suppression. During 130 Hz 

driving, F synapses have tiny EPSC amplitudes while D synapse EPSCs are 

essentially zero. 

Thus we can conclude that Independent of the synapse type (D, F, P), high 

frequency driving of the synapse models generates marked EPSC suppression. 
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CHAPTER 4 

THE LIF SPIKING NEURON MODEL 

 

4.1 Introduction 

Many neuron models emerged to mimic the functions of a biological neuron, 

especially the LIF spiking model. It is a simplified and much easier model for 

hardware implementation and large-scale integration. The primary purpose of 

an artificial neuron is to mimic the functions of biological neurons in an energy 

effectiveness and scalability way. The typical LIF model consists of a capacitor 

and a resistor. The external stimulus is applied to the LIF model until a 

threshold is reached, and then the action potential is produced. Although the LIF 

model can reproduce the firing behaviors of neurons after each activation, the 

previous pulse cannot be retained, and the biological spiking frequency 

adaptability does not perform very well. To solve these deficiencies, we need to 

find a new device to promote the LIF neuron model. A memristor is a potential 

element to emulate the function and behavior of a biological synapse or neuron 

gets a lot of attention. The non-volatile memristor modulates its conductance 

due to ion motion, similar to the phenomena in biological neurons and synapses. 

Therefore, these advantages enable the memristor to become an inevitable 

choice as a building block between artificial neural networks and biological 

neural networks.  

Even though the LIF neuron model with a memristor had achieved lots of 

progress in emulating biological neurons, the implementation of retaining the 

previous pulse and performing the biological spiking frequency adaptability has 

not been yet explored in the MLIF neuron model. 

The LIF spiking circuit model is put forward which is closer to the real 

biological neuron, as shown in Figure 4.7 



25 
 

 

Fig 4.7 The LIF circuit model of the axon membrane. (A) The sketch of the cell 

membrane. (B) The circuit model of the cell membrane. 

The cell membrane consists of the lipid bilayer and the ionic channel (Fig 4.7 

A). The lipid bilayer can be represented by a capacitor, and the ionic channel 

can be characterized by a resistor (Fig 4.7 B). 𝐼𝑒𝑥𝑡 is external stimulus, C is the 

membrane capacitor, R is the membrane resistor (leaky resistor), 𝑉𝑟𝑒𝑠𝑡 is the 

resting voltage, 𝑉 − 𝑉𝑟𝑒𝑠𝑡  is the resistive voltage, 𝐼𝑐 is the current that passes 

through membrane capacitor, IR is the current that passes through the 

membrane resistor, and V is the membrane voltage. Current passes through the 

membrane capacitor: 

𝑞 = 𝐶𝑉                                                                                                                    (1)            

𝐼𝑐 =
𝑑𝑞

𝑑𝑡
= 𝐶𝑑𝑣/𝑑𝑡                                                                                                 (2) 

    Current passes through the membrane resistor:                                                  

𝐼𝑅 = (𝑉 − 𝑉𝑟𝑒𝑠𝑡)/𝑅                                                                                               (3) 

     According to Kirchhoff’s current law: 

𝐼𝑒𝑥𝑡 = 𝐼𝑐 + 𝐼𝑅                                                                                                          (4) 

The time constant: 

𝜏 = 𝑅𝐶                                                                                                                      (5) 

The differential equation of the LIF model, which represents the leaky 

integration process: 
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𝑑𝑡 = −(𝑉 − 𝑉𝑟𝑒𝑠𝑡) + 𝑅𝐼𝑒𝑥𝑡                                                                                   (6) 

Using the finite differential method to solve (6) and compute the membrane 

potential at a time step of duration ∆𝑡: 

𝑉(𝑡 + ∆𝑡) − 𝑉(𝑡) =
∆𝑡

𝜏
(−𝑉(𝑡) + 𝑉𝑟𝑒𝑠𝑡 + 𝑅𝐼𝑒𝑥𝑡)                                              (7) 

4.2 Post-synaptic neuron firing 

We used a noisy leaky-integrate-and-fire (LIF) neuron model to evaluate the 

post-synaptic response to the DBS-driven synaptic inputs. The LIF neuron was 

parameterized to exhibit an intrinsic tonic firing pattern at 20 Hz. This was 

achieved by incorporating a bias current, 𝐼𝑒 (0.56 nA), background synaptic 

inputs that arrived stochastically at 𝑡𝑘 via a Poissonian process with rate 𝜔𝑘, 

and white Gaussian noise, n(t), that had a mean of 0 and variance (𝜎2) of 2.5. 

The LIF neuron also received glutamatergic inputs from DBS-driven synapses, 

where TM models simulated EPSCs that could also be modulated by a synaptic 

fidelity coefficient (𝜔𝑠𝑓). Therefore, the transmembrane potential, v, of the LIF 

neuron model was defined by the following differential equation: 

𝐶𝑚�̇� =
𝐸𝐼 − 𝑣

𝑅𝑚
+ 𝐼𝑒 +𝜔𝑠𝑓𝐸𝑃𝑆𝐶 +∑𝜔𝑘𝛿(𝑡 − 𝑡𝑘)

𝑘,𝑡𝑘

+ 𝑛(𝑡)                      (8)           

Where 𝐶𝑚 (1 𝜇𝐹)  and 𝑅𝑚 (100 𝑀Ω) are the membrane capacitance and 

resistance respectively, and 𝐸𝐼 (−70 𝑚𝑉) is the leak voltage. In eq. (8) EPSC 

represents the summated post-synaptic currents from all DBS-driven inputs 

[31]. 
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4.3  Results 

Varying DBS frequency 

fdbs=60Hz 

 

 

Fig.4.8 

 

Fig.4.9 
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Fig.4.10 

 

Fig.4.11 

Fig. 4.8(A) shows the input frequency, i.e. 60Hz. Fig.4.8(B) depicts EPSC from 

F, D and P synapses distinctly. Fig. 4.8(C) shows the total EPSC generated from 

all the synapses F, D and P. Fig.4.8(D) shows the response of neuron when 

driven by DBS input with or without TM synaptic dynamics. 

Fig. 4.9 shows the number of spikes generated versus DBS pulse time period in 

milliseconds. The maximum no. of spikes generated is 35 at 4ms, whereas the 

average no. of spikes generated is 5.6. 
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Fig.4.10 and Fig.4.11 shows stimulus triggered action potentials during DBS. 

Fig.4.10 shows raster plot of the LIF neuron model without TM synaptic 

dynamics and Fig. 4.11 with TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms. 

LIF rate without any synaptic connection = 8.0053 (Hz) 

LIF rate with a fraction of synapses during DBS10Hz = 53.3689 (Hz) 

LIF rate with all synapses during DBS10Hz = 66.7111 Hz 

Elapsed time is 12.924753 seconds. 

 

fdbs=80Hz 

 

Fig.4.12 
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Fig.4.13 

 

Fig.4.14 
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Fig. 4.15 

Fig. 4.12(A) shows the input frequency, i.e. 80Hz. Fig.4.12(B) depicts EPSC 

from F, D and P synapses distinctly. Fig. 4.12(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.4.12(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Fig. 4.13 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 29 at 4ms, whereas the 

average no. of spikes generated is 7.7. 

Fig.4.14 and Fig.4.15 shows stimulus triggered action potentials during DBS. 

Fig.4.14 shows raster plot of the LIF neuron model with TM synaptic dynamics 

and Fig. 4.15 without TM synaptic dynamics. Maximum no. of spikes generated 

lie at DBS pulse time of 4ms to 5ms. 

LIF rate without any synaptic connection = 8.0053 (Hz) 

LIF rate with a fraction of synapses during DBS10Hz = 54.036 (Hz) 

LIF rate with all synapses during DBS10Hz = 69.3796 Hz 

Elapsed time is 10.173028 seconds. 
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fdbs=130Hz 

 

Fig. 4.16 

 

Fig.4.17 
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Fig.4.18 

 

Fig.4.19 

Fig. 4.16(A) shows the input frequency, i.e. 130Hz. Fig.4.16(B) depicts EPSC 

from F, D and P synapses distinctly. Fig. 4.16(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.4.16 (D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Fig. 4.17 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 44 at 4ms, whereas the 

average no. of spikes generated is 13. 
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Fig.4.18 and Fig.4.19 shows stimulus triggered action potentials during DBS. 

Fig.4.18 shows raster plot of the LIF neuron model with TM synaptic dynamics 

and Fig. 4.19 without TM synaptic dynamics. Maximum no. of spikes generated 

lie at DBS pulse time of 4ms. 

LIF rate without any synaptic connection = 8.6724 (Hz) 

LIF rate with a fraction of synapses during DBS10Hz = 56.7045 (Hz) 

LIF rate with all synapses during DBS10Hz = 72.7151 Hz 

Elapsed time is 15.008347 seconds. 

 

fdbs=150Hz 

 

Fig.4.20 
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Fig.4.21 

 

Fig.4.22 
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Fig.4.23 

Fig. 4.20(A) shows the input frequency, i.e. 150Hz. Fig.4.20(B) depicts EPSC 

from F, D and P synapses distinctly. Fig. 4.20(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.4.20(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Fig. 4.21 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 28 at 4ms, whereas the 

average no. of spikes generated is 14.75. 

Fig.4.22 and Fig.4.23 shows stimulus triggered action potentials during DBS. 

Fig.4.22 shows raster plot of the LIF neuron model with TM synaptic dynamics 

and Fig. 4.23 without TM synaptic dynamics. Maximum no. of spikes generated 

lie at DBS pulse time of 4ms. 

LIF rate without any synaptic connection = 8.0053 (Hz) 

LIF rate with a fraction of synapses during DBS10Hz = 56.7045 (Hz) 

LIF rate with all synapses during DBS10Hz = 74.0494 Hz 

Elapsed time is 16.477522 seconds. 
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Fig.4.8 to Fig.4.23 depicts the post synaptic spiking activity of the F, D and P 

synapses triggered by DBS. It is found that the average number of spikes 

generated increased as the applied DBS frequency was increased. This implies 

that as the DBS frequency increases, the spiking activity also increases. 

Glutamatergic synaptic inputs were sent to the LIF neuron model, all of which 

were explicitly triggered by our DBS signal (with a 2 ms AP transmission delay 

from thalamus). Based on physiologically realistic distributions of synapse 

types, the various synaptic inputs were classified as F (45), D (38), or P (17). 

EPSCs were generated simultaneously in the LIF neuron when a single DBS 

pulse was initiated in these synaptic inputs, thus resulting in a total DBS EPSC 

that was a mix of F, D, and P components.  A single DBS EPSC, generated with 

the initial conditions of the synapse models, was suprathreshold for the 

generation of a stimulus evoked AP in the LIF neuron. High frequency driving 

(130 Hz) of the DBS synaptic input generated an initial burst of APs in the LIF 

neuron and then as the total DBS EPSC reduced in amplitude to a steady-state 

value, the inputs provided subthreshold excitatory inputs to the LIF neuron. The 

overall result of this DBS-driven excitatory current was an increased average 

firing rate.  
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CHAPTER 5 

DYNAMICS OF MEMRISTIVE LIF MODEL UNDER DEEP 

BRAIN STIMULATION 

 

5.1 Introduction  

A memristor is a two-terminal passive electrical component that serves as a 

fundamental non-linear circuit element that links charge and magnetic flux. The 

memristor is a promising device in many analogue and digital applications, 

particularly memory chips, logic circuits, and neural networks [23]. 

 

Fig 5.1 Memristor 

Three fundamental passive elements such as resistor, capacitor, and inductor are 

currently used to build electronic circuits. The fourth fundamental element 

called memristor has recently emerged [24]. Professor Leon O. Chua of the 

University of California at Berkeley initially described a basic circuit that 

connects flux to charge in 1971, and it was successfully discovered in 2008 by a 

team led by Stanley Williams of HP Labs. Members of an HP Lab submitted a 

paper describing the successful realisation of a nanoscale electronic component 

whose measured physical attributes can be described by the memristor theory. 

As illustrated in the figure 2, the HP memristor is a solid state device made up 

of a nanometer-scale TiO2 thin film with a doped and undoped region 

sandwiched between two Platinum electrodes. 

 

Fig 5.2 Titanium Dioxide Memristor 
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The new two-terminal passive element is named memristor as it combines the 

behavior of a memory and a resistor (i.e. memory+resistor). Memristors have 

shown various outstanding properties, such as good compatibility with CMOS 

technology, small device area for high-density on-chip integration, non-volatility, 

fast speed, low power dissipation, and high scalability [25]. One of the basic 

properties, resistance, of a memristor depends on the magnitude, direction, and 

duration of the voltage applied across its terminals. Memristor remembers its 

most recent resistance value when applied voltage was turned off and until the 

next time when applied voltage is turn on. And has other properties including 

pinched hysteresis and dynamical-negative resistance that can have significant 

impact on nanoelectronics.  

Many uses for the memristor have been proposed since 2008. Memristors can 

be utilized in Resistive Random Access Memory (RRAM) cell architectures and 

Memristor-based Content Addressable Memories (MCAMs) that use a 

combination of memristor and MOS devices in memory chips. The capacity of 

the memristor to "memorise" the current pass through it and its direction can be 

employed efficiently in neural networks to minimize the area and complexity of 

neuromorphic circuits. A novel form of memristor-based IMPLY logic circuit 

was developed in the field of logic circuits. Memristor-based logic has the 

unique capability of being manufactured on the same chip as memory cells. 

Crossbar-arrays, which are employed in the switching blocks of Field 

Programmable Gate Arrays, are also designed with memristors (FPGAs) [26]. 

Thus, although memristors took many years to transform from a purely 

theoretical derivation into a feasible implementation, these devices has been 

widely used in applications such as machine learning and neuromorphic 

computing, as well as non-volatile random-access memory. 

Ion motion controls the conductance of the non-volatile memristor, which is 

analogous to what happens in organic neurons and synapses. As a result of these 

advantages, the memristor has become an unavoidable choice as a building 

block for both artificial and organic neural networks. 
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5.2 Memristor properties 

5.2.1 Flux-Charge relation 

A charge-controlled memristor is one in which the flux and charge relationship 

is expressed as a function of charge, whereas a flux-controlled memristor is one 

in which the flux and charge relationship is expressed as a function of flux [27]. 

A linear (constant) memristor acts like resistance. If relation is nonlinear, the 

device behaviour is more complex, thus the memristor’s parameter that relates 𝑞 

and 𝜑 is not a constant [28]. 

Memristance M is the missing link between flux and charge. The memristor is 

said to be charge-controlled with a memristance ‘M (q)’ given by: 

𝑀(𝑞) =
𝑑𝜑

𝑑𝑞
 

The memristor is said to be flux-controlled with a memductance ‘W (𝜑)’ given 

by: 

𝑊(𝜑) =
𝑑𝑞

𝑑𝜑
 

 

Therefore it can be derived that: 

𝑣 = 𝑀(𝑞). 𝑖 

𝑖 = 𝑊(𝜑). 𝑣 

 

Memristance has the same unit (Ohm) as resistance, and M(q) is logically a 

charge controlled resistance. Similarly, the memductance has the unit of 

conductance [29]. The inverse of memductance is memristance, 

𝑀 = 1 𝑊(𝜑)⁄  

 

The q- 𝜑 curve is characterised by a monotonically increasing trend. The 

memristance M is the slope of this curve (q). As a result, the memristance is 
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always positive M(q)≥0. A memristor is a passive element if and only if the 

memristance has a non-negative value, according to the passivity requirement. 

The instantaneous power dissipated by the memristor is given by: 

𝑃(𝑖) = 𝑀(𝑞)𝑖(𝑡)2 

Since M(q)≥0, the wasted power is always positive. As a result, the memristor is 

a passive device. This means it can't produce or store energy; it can only 

consume power. A memristor, like a resistor, is entirely dissipative [23]. 

 

 

 

Fig. 5.3 Three examples of charge-flux characteristics of the memristor, which 

all have monotonically increasing characteristics. 

 

5.2.2  Current-Voltage relation 

The current-voltage characteristic of a memristor, which exhibits a pinched 

hysteresis loop, is its most important feature. The I-V characteristic of the 

memristor cannot be achieved using any combination of the other three basic 

components, therefore the memristor is considered a basic component [26]. By 

applying a periodic signal to a memristor, if the voltage is zero, the current will 

be zero and vice-versa. So, both voltage v(t) and current i(t) curves always 

crosses the origin curve. The pinched hysteresis loop's shape will fluctuate with 

frequency. The hysteresis loop shrinks when the frequency is increased. The 

memristor will behave like a conventional resistor if the frequency is increased 

to infinity [23]. 
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The I-V characteristic's slope changes, indicating a changeover between distinct 

resistance states, with the resistance becoming positive as the applied voltage 

rises and negative as it falls. Double-loop I-V hysteresis is produced by the 

symmetrical voltage bias, which can collapse to a straight line at high 

frequencies [24]. 

 

 

Fig. 5.4 Current-voltage characteristics of the memristor. 

 

5.2.3  Resistance – Time Relation 

The resistance versus time characteristic of the memristor is depicted in Fig. 4.5 

The instantaneous resistance is in the range [𝑅𝑂𝑁 , 𝑅𝑂𝐹𝐹]. The resistance values 

depend on the applied voltage. For a sine-wave voltage with period T, the 

memristance has its extreme (maximum or minimum) values at the following 

time instances: t = (2n + 1)T/2 [30]. 
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Fig. 5.5 Resistance Versus Time plot of the memristor 

5.2.4  Resistance – Voltage Relation 

The resistance versus voltage characteristic is depicted in Fig. 4.6. The voltage 

across the memristor is initially 0 Volt, with a current of 0 Amp and a resistance 

of 𝑅𝑖 [30]. 

The memristance value also depends on the sign of v(t); in other words, 

resistance [𝑅𝑖 , 𝑅𝑂𝐹𝐹] for v(t) < 0 and [𝑅𝑂𝑁 , 𝑅𝑖] for v(t) > 0. This is because 

current follows voltage, whereas resistance rises as voltage rises. When the 

voltage drops to zero, the resistance reaches its maximum, 𝑅𝑂𝐹𝐹 [24]. 

 

 

Fig. 5.6 Resistance Versus Voltage plot of the memristor. 
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5.3 The Memristive LIF (MLIF) spiking neuron model 

Considering the LIF spiking model has no memory of the previous spike and 

the memory advantage of the memristor (can “remember” the charges pass 

through itself, and it is called non-volatile characteristics) we introduce a 

memristor to the LIF spiking model, as shown in Figure 4.8. 

 

Fig 5.7 The MLIF circuit model and the I-V curve of the memristor. (A) MC 

membrane circuit of the MLIF model. (B) The pinched hysteresis curve and frequency 

characteristics of ion channel memristor. 

 

When we apply a sinusoidal voltage to the ion channel memristor, it performs a 

zero-crossing pinched hysteresis curve. When we adjust the voltage frequency 

to 100 Hz, the electrical characteristics of the memristor are close to a straight 

line. The memristor performs the feature of pure resistance. In Figure 4.8 B, the 

distribution of the curve is in the first and third quadrants, which indicates that 

the device is passive. The curve has two prominent switching states and keeps a 

memristance constant without a power supply. It shows that the device is non-

volatile. 

In the MLIF membrane circuit, the τ is not a constant anymore, and it becomes 

a function of time. Therefore, 𝜏 = 𝑅𝐶 is transformed into 𝜏𝑀(𝑡) = 𝑀(𝑡)𝐶. The 

memristor 𝑀(𝑡) is divided into charge-controlled memristor and flux-controlled 

memristor, and they are the functions of time. According to 𝑞 = 𝐶𝑉, we get 

𝑞(𝑡) = 𝐶(𝑡)𝑉𝑀 (𝑉𝑀 is the membrane voltage of the MLIF model, as shown in 
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Figure 4.8 A), thereby we can rewrite C as 𝐶(𝑡) = 𝑞(𝑡)/𝑉𝑀, and 𝜏𝑀(𝑡) =

𝑀(𝑡)𝑞(𝑡)/𝑉𝑀. The charge or discharge time of the capacitor always relates to 

the accumulation of charge [32]. 

The charge-controlled memristor: 

𝑀(𝑞(𝑡)) = 

{

20000 ,                                                                   𝑞(𝑡) < −0.5 × 10−4

104 + (−1.99) × 108 × 𝑞(𝑡),   𝑞(𝑡) ≥ −0.5 × 10−4  𝑞(𝑡) < 0.5 × 10−4

100 ,                                                                      𝑞(𝑡) ≥ 0.5 × 10−4
} (9) 

     

And then, we get: 

𝜏𝑀(𝑡) = 

{
 
 

 
 

20000𝑞(𝑡)

𝑉𝑀
                                                              𝜑(𝑡) < −0.75

104𝑞(𝑡)

𝑉𝑀
+ (−1.99) × 108 ×

𝑞(𝑡)2

𝑉𝑀
,   𝜑(𝑡) ≥ −0.75 𝑎𝑛𝑑 𝜑(𝑡) < 0.25

100𝑞(𝑡)

𝑉𝑀
,                                             𝜑(𝑡) ≥ 0.25 }

 
 

 
 

   (10) 

 

From the above equations, we can get the time constants of charge-controlled 

memrister. 

According to the MLIF membrane circuit and (7), the mathematic expression of 

the MLIF model can be rewritten as follows: 

𝑉𝑀(𝑡 + ∆𝑡) − 𝑉𝑀(𝑡) =
∆𝑡

𝜏(𝑡)
(−𝑉𝑀(𝑡) + 𝑉𝑟𝑒𝑠𝑡 +𝑀(𝑡)𝐼𝑒𝑥𝑡)                            (11) 

In the following experiments, the different stimuli are applied to the MLIF 

model, and the values of parameters will be set as 𝐶 = 2 × 10−9𝐹, 𝑅 = 106 Ω, 

𝑉𝑟𝑒𝑠𝑡 = −60 𝑚𝑉, 𝑉𝑡ℎ = −50 𝑚𝑉, 𝑉𝑟𝑒𝑠𝑡 = −80 𝑚𝑉 
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5.4 Results 

Varying DBS frequency 

fdbs=60Hz 

 

Fig.5.8 

 

Fig.5.9 
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Fig.5.10 

 

Fig.5.11 

 

Fig.5.8(A) shows the input frequency, i.e. 60Hz. Fig.5.8(B) depicts EPSC from 

F, D and P synapses distinctly. Fig. 5.8(C) shows the total EPSC generated from 

all the synapses F, D and P. Fig.5.8(D) shows the response of neuron when 

driven by DBS input with or without TM synaptic dynamics. 



48 
 

Fig. 5.9 shows the number of spikes generated versus DBS pulse time period in 

milliseconds. The maximum no. of spikes generated is 44 at 4ms, whereas the 

average no. of spikes generated is 39.44. 

Fig.5.10 and Fig.5.11 shows stimulus triggered action potentials during DBS. 

Fig.5.10 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.11 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms. 

MLIF rate without any synaptic connection = 381.5877 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 360.2402 (Hz) 

MLIF rate with all synapses during DBS10Hz = 450.3002 Hz 

Elapsed time is 8.107420 seconds. 

 

fdbs=80Hz 

 

Fig.5.12 
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Fig.5.13 

 

Fig.5.14 
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Fig.5.15 

Fig.5.12(A) shows the input frequency, i.e. 80Hz. Fig.5.8(B) depicts EPSC from 

F, D and P synapses distinctly. Fig.5.12(C) shows the total EPSC generated 

from all the synapses F, D and P. Fig.5.12(D) shows the response of neuron 

when driven by DBS input with or without TM synaptic dynamics. 

Fig. 5.13 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 58 at 4ms, whereas the 

average no. of spikes generated is 53.36 

Fig.5.14 and Fig.5.15 shows stimulus triggered action potentials during DBS. 

Fig.5.14 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.15 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms. 

MLIF rate without any synaptic connection = 392.2615 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 396.9313 (Hz) 

MLIF rate with all synapses during DBS10Hz = 465.6438 Hz 

Elapsed time is 9.892783 seconds. 

 

  



51 
 

fdbs=130Hz 

 

Fig.5.16 

 

Fig.5.17 
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Fig.5.18 

 

Fig.5.19 

Fig.5.16(A) shows the input frequency, i.e. 130Hz. Fig.5.16(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.16(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.16(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 
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Fig. 5.17 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 94 at 4ms, whereas the 

average no. of spikes generated is 90.22. 

Fig.5.18 and Fig.5.19 shows stimulus triggered action potentials during DBS. 

Fig.5.18 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.19 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms to 7ms. 

MLIF rate without any synaptic connection = 387.5917 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 442.2949 (Hz) 

MLIF rate with all synapses during DBS10Hz = 483.6558 Hz 

Elapsed time is 15.005125 seconds. 

 

fdbs=150Hz 

 

Fig.5.20 
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 Fig.5.21 

 

Fig.5.22 
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Fig.5.23 

Fig.5.20(A) shows the input frequency, i.e. 150Hz. Fig.5.20(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.20(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.20(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Fig. 5.21 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 107 from 4ms to 6ms, 

whereas the average no. of spikes generated is 105.9. 

Fig.5.22 and Fig.5.23 shows stimulus triggered action potentials during DBS. 

Fig.5.22 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.23 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms to 6ms. 

MLIF rate without any synaptic connection = 392.2615 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 479.6531 (Hz) 

MLIF rate with all synapses during DBS10Hz = 494.9967 Hz 

Elapsed time is 16.452186 seconds. 

 

Fig.5.8 to Fig.5.23 depicts the post synaptic spiking activity of the F, D and P 

synapses triggered by DBS. It is found that the average number of spikes 
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generated by the MLIF neuron model increased as the applied DBS frequency 

was increased. This implies that as the DBS frequency increases, the spiking 

activity also increases. 

Comparing Fig.4.8-4.23 with corresponding frequency plots in Figh.5.8-5.23, 

we observe that the number of spikes generated is greater when using MLIF 

neuron model. Hence, MLIF neuron model exhibits increased spiking activity 

than LIF neuron model. 

 

Varying Noise input  

(fdbs=130Hz) 

wght=0 

 

Fig.5.24 
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Fig.5.25 

 

Fig.5.26 
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Fig.5.27 

Fig.5.24(A) shows the input frequency, i.e. 130Hz. Fig.5.24(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.24(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.24(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. No 

noise input is given. 

Fig. 5.25 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is constant at 94 from 

1ms to 7ms, whereas the average no. of spikes generated is 94. 

Fig.5.26 and Fig.5.27 shows stimulus triggered action potentials during DBS. 

Fig.5.26 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.27 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 1ms to 7ms. 

MLIF rate without any synaptic connection = 501.0007 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 501.0007 (Hz) 

MLIF rate with all synapses during DBS10Hz = 501.0007 Hz 

Elapsed time is 17.941460 seconds. 
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wght=0.5 

 

Fig.5.28 

 

Fig.5.29 
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Fig.5.30 

 

Fig.5.31 

Fig.5.28(A) shows the input frequency, i.e. 130Hz. Fig.5.28(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.28(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.28(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Noise input given is wght=0.5. 
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Fig. 5.29 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 94 at 4ms, whereas the 

average no. of spikes generated is 90.22. 

Fig.5.30 and Fig.5.31 shows stimulus triggered action potentials during DBS. 

Fig.5.30 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig. 5.31 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms to 7ms. 

MLIF rate without any synaptic connection = 387.5917 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 442.2949 (Hz) 

MLIF rate with all synapses during DBS10Hz = 483.6558 Hz 

Elapsed time is 15.005125 seconds. 

 

wght=5 

 

Fig.5.32 
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Fig.5.33 

 

Fig.5.34 
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Fig.5.35 

 

Fig.5.32(A) shows the input frequency, i.e. 130Hz. Fig.5.32(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.32(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.32(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. A 

high noise input is given as wght=5. 

Fig. 5.33 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 87 at 4ms, whereas the 

average no. of spikes generated is 68. 

Fig.5.34 and Fig.5.35 shows stimulus triggered action potentials during DBS. 

Fig.5.34 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig.5.35 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms. 

MLIF rate without any synaptic connection = 334.2228 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 112.0747 (Hz) 

MLIF rate with all synapses during DBS10Hz = 364.9099 Hz 

Elapsed time is 24.509666 seconds. 
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wght=10 

 

Fig.5.36 

 

Fig.5.37 
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Fig.5.38 

 

Fig.5.39 

Fig.5.36(A) shows the input frequency, i.e. 130Hz. Fig.5.36(B) depicts EPSC 

from F, D and P synapses distinctly. Fig.5.36(C) shows the total EPSC 

generated from all the synapses F, D and P. Fig.5.36(D) shows the response of 

neuron when driven by DBS input with or without TM synaptic dynamics. 

Noise input is given is wght=10. 
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Fig. 5.37 shows the number of spikes generated versus DBS pulse time period 

in milliseconds. The maximum no. of spikes generated is 74 at 4ms, whereas the 

average no. of spikes generated is 66. 

Fig.5.38 and Fig.5.39 shows stimulus triggered action potentials during DBS. 

Fig.5.38 shows raster plot of the MLIF neuron model with TM synaptic 

dynamics and Fig.5.39 without TM synaptic dynamics. Maximum no. of spikes 

generated lie at DBS pulse time of 4ms to 6ms. 

MLIF rate without any synaptic connection = 338.8926 (Hz) 

MLIF rate with a fraction of synapses during DBS10Hz = 99.3996 (Hz) 

MLIF rate with all synapses during DBS10Hz = 362.2415 Hz 

Elapsed time is 12.505596 seconds. 

 

Analyzing Fig.5.24-5.39, we observe that as the applied noise input increases, 

the average number of spikes generated decreases. This implies that, the spiking 

activity of MLIF neuron model decreases with increasing noise input. 
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CHAPTER 6 

DISCUSSION 

 

The objective of this study was to develop a simple model that could capture the 

overall characteristics of DBS induced synaptic suppression and the DBS 

triggered post synaptic spiking. We used the Tsodyks-Markram (TM) 

phenomenological synapse model to represent depressing, facilitating, and 

pseudo-linear synapses driven by DBS over a wide range of stimulation 

frequencies. The EPSCs were then used as inputs to a leaky integrate-and-fire 

neuron model (LIF) and later to a memristor leaky integrate-and-fire neuron 

model (MLIF) in order to measure the DBS-triggered post-synaptic spiking 

activity.  

Low frequency stimulation can generate a wide range of EPSCs that depend 

upon the type of synapse. High frequency driving of the synapse models 

generate marked EPSC suppression, independent of the synapse type. The 

average spiking activity increased with increase of applied DBS. The average 

spiking activity was found to decrease with increase in noise input. The MLIF 

neuron model was found to exhibit better spiking activity than LIF neuron 

model. Practically, it is undesirable to expose our body to very high frequency 

stimulation for DBS treatment to control movement disorders. Thus we prefer 

MLIF neuron model over LIF neuron model for enhanced spiking activity using 

a particular DBS frequency. The findings of this study are still theoretical, they 

do represent a step towards analyzing the consequences of DBS from a synaptic 

first principles approach. We hypothesize that by first understanding the effects 

of DBS at the synapse level, we may then extrapolate to network-level effects.  

The basic purpose of brain stimulation therapy is to employ electrical pulses to 

modulate the release of neurotransmitters in specific brain circuits. Low 

frequency stimulation can be used to enhance neurotransmitter release in 

directly activated pathways, whereas high frequency stimulation can decrease 

synaptic communication through the methods described in this project. 

Furthermore, recent computational research and intraoperative human 

recordings have proven the importance of synaptic suppression in 

comprehending and interpreting neural activity patterns recorded during the 

DBS. We propose that the basic mechanism of DBS is to exploit the 
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physiological limits of the synaptic machinery to suppress connectivity. A 

simple model for these processes can help in optimization of DBS pulsing. 

The LIF model with the non-volatile memristor is successfully proposed in this 

study, and we aim to develop the application of memristor in neuroscience. We 

choose the charge-controlled memristor to combine with the LIF spiking model 

and get the MLIF spiking model. We examined the firing patterns of LIF and 

MLIF and found the superiority of MLIF model over LIF model. The 

simulation results show that the MLIF model has good biological spiking 

frequency adaptation, higher firing frequency, and rich firing patterns. The 

MLIF model can reproduce the firing behavior of biological neurons very well. 

Recent studies have shown that human skin and other biological tissues are 

memristors. Many researches have found that human skin exhibits non-volatile 

memory and that analogue information can actually be stored inside the skin at 

least for three minutes. Human skin actually contains two different memristor 

types, one that originates from the sweat ducts and one that is based on thermal 

changes of the surrounding tissue, the stratum corneum; and information storage 

is possible in both. Assuming that different physiological conditions of the skin 

can explain the variations in current responses that we observed among the 

subjects, it follows that non-linear recordings with DC pulses may find use in 

sensor applications. A new understanding of skin’s electrical properties could 

have implications for medicine. This can even lead to development of 

artificially implantable skin. 
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MATLAB code for TM Model 

%%%%%% This code generates the excitatory postsynaptic currents of 
%%%%%% facilitating, depressing and pseudo-linear excitatory syanpses 
%%%%%% based on Tsodyks-Markram synaptic model 
 

clearvars 

  
dt=.1; ti=dt; tf=10000; 
t=ti:dt:tf; 

  
% DBS input 
fdbs=1:130; 
T=ones(1,length(fdbs)); 
dbsi=500/dt; dbsf=10000/dt; 

  
% I Kernel time constant 
taus=1.75; %3 

  
%input spike train 
sp=zeros(length(fdbs),length(t)); 

  
% Synapse parameters % Each column represents E1, E2 and E3 respectively 
tauf=[670,17,326]; 
taud=[138,671,329]; 
U=[.09,.5,.29]; 
% A=[0.0025,0.0025,0.0025]; 
A=[1,1,1]; 
n=1; 
A=n*A; 

  
% Compute EPSC 
u=zeros(length(fdbs),length(t)); 
x=ones(length(fdbs),length(t)); 
I=zeros(length(fdbs),length(t)); 
% It=zeros(length(fdbs),length(t)); 
EPSC=zeros(length(A),length(fdbs),length(t)); 
select_time=dbsf-50000:dbsf; 
It=zeros(length(fdbs),length(select_time)); 
M_I=ones(length(A),length(fdbs));    
mi=zeros(length(A),1); 
M_Iall=ones(length(A),length(fdbs));    
area=zeros(length(A),length(fdbs)); 
area1=zeros(length(A),length(fdbs)); 
% Sc=zeros(length(A),length(fdbs)); 

  
for p=1:3 
    for j=1:length(fdbs) 
        T(j)=round(1000/fdbs(j)/dt); 
        ts=dbsi:T(j):dbsf; 
        sp(j,ts)=1/dt; 
            for i=1:length(t)-1  
                u(j,(i+1)) = u(j,i)+dt*(-(u(j,i)/tauf(p))+U(p)*(1-

u(j,i))*sp(j,i));  
                x(j,(i+1)) = x(j,i) + dt*((1/taud(p))*(1-x(j,i)) - 

u(j,i+1)*x(j,i)*sp(j,i)); 
                I(j,(i+1)) = I(j,i) + dt*((-1/taus)*I(j,i) + 

A(p)*u(j,i+1)*x(j,i)*sp(j,i)); 
            end 
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        EPSC(p,j,:)= I(j,:);      
%         M_Iall(p,j)=max(I(j,:)); 
        It(j,:)=I(j,select_time); 
        M_I(p,j)=max(It(j,:)); 
%         mi(p)=max(M_Iall(p,j)); 
%         M_I(p,j)=M_I(p,j)./mi(p); 
t1{p,j}=ts(end-1)+1:ts(end);   %last period EPSC curve 
It1{p,j}=I(j,t1{p,j}); 
area1(p,j)=trapz(t1{p,j},It1{p,j})/10;       %area under the EPSC curve for 

1 EPSC 
area(p,j)=area1(p,j)*j;                      %area under the EPSC curve in 

1 second 
    end   
end 

  
%gain peak frequency 
theta=1000/sqrt(tauf(1)*taud(1)*U(1)); %valid only for facilitating synapse 

  
%Make figure 
freq1=20; freq2=130; 
figure; 
ax1=subplot(4,3,1); 

  

  
plot(t,squeeze(EPSC(1,freq1,:)),'k','LineWidth',1); ylabel({'EPSC 

(nA)';'Facilitating'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax2=subplot(4,3,2); 
qq=EPSC(1,freq2,:) 
ww=squeeze(EPSC(1,freq2,:)) 
%plot(t,squeeze(EPSC(1,freq2,:)),'k','LineWidth',1); %ylabel({'I_{syn} 

(nA)'; 'EPSC'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax3=subplot(4,3,3); 
scatter(fdbs,squeeze(M_I(1,:,1)),'k','.'); ylabel({'Facilitating 

synapse';'EPSC_{st} amplitude (nA)'},'FontWeight','bold') 

  
hold on 
plot((1./fdbs)+.008,'--','LineWidth',1); zoom xon; %ylim([0 .14]) 
ylim([0 .6]); 

  
ax4=subplot(4,3,4); 
plot(t,squeeze(EPSC(2,freq1,:)),'k','LineWidth',1); ylabel({'EPSC 

(nA)';'Depressing'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax5=subplot(4,3,5); 
plot(t,squeeze(EPSC(2,freq2,:)),'k','LineWidth',1); %ylabel({'I_{syn} 

(nA)'; 'EPSC'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax6=subplot(4,3,6); 
scatter(fdbs,squeeze(M_I(2,:,1)),'k','.'); ylabel({'Depressing 

synapse';'EPSC_{st} amplitude (nA)'},'FontWeight','bold') 
ylim([0 .6]); 

  
ax7=subplot(4,3,7); 



71 
 

plot(t,squeeze(EPSC(3,freq1,:)),'k','LineWidth',1); ylabel({'EPSC 

(nA)';'Pseudo-linear'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax8=subplot(4,3,8); 
plot(t,squeeze(EPSC(3,freq2,:)),'k','LineWidth',1); %ylabel({'I_{syn} 

(nA)'; 'EPSC'},'FontWeight','bold') 
xlim([450 1000]); ylim([0 .6]); 

  
ax9=subplot(4,3,9); 
scatter(fdbs,squeeze(M_I(3,:,1)),'k','.'); ylabel({'Pseudo-linear 

synapse';'EPSC_{st} amplitude (nA)'},'FontWeight','bold') 
ylim([0 .6]); 

  
ax10=subplot(4,3,10); 
plot(t,sp(freq1,:),'k','LineWidth',1); zoom xon; ylabel(['Input 

',num2str(freq1),' Hz'],'FontWeight','bold') 
xlim([450 1000]);  
xlabel('Time (ms)','FontWeight','bold');  

  
ax11=subplot(4,3,11); 
plot(t,sp(freq2,:),'k','LineWidth',1); zoom xon; ylabel(['Input 

',num2str(freq2),' Hz'],'FontWeight','bold') 
xlim([450 1000]);  
xlabel('Time (ms)','FontWeight','bold');  

  
ax12=subplot(4,3,12); 
scatter(fdbs,squeeze(M_I(1,:,1)),'.'); zoom xon; hold on; 
scatter(fdbs,squeeze(M_I(2,:,1)),'.'); hold on 
scatter(fdbs,squeeze(M_I(3,:,1)),'.'); hold on 
xlabel('Frequency (Hz)','FontWeight','bold');  
ylabel({'All synapses';'EPSC_{st} amplitude (nA)'},'FontWeight','bold') 
ylim([0 .6]); 

  
figure 
scatter(fdbs,squeeze(M_I(1,:,1)),'filled'); zoom xon; hold on; 
scatter(fdbs,squeeze(M_I(2,:,1)),'filled'); hold on 
scatter(fdbs,squeeze(M_I(3,:,1)),'filled'); hold on 
xlabel('Frequency (Hz)','FontWeight','bold');  
ylabel({'EPSC_{st} amplitude (nA)'},'FontWeight','bold') 
ylim([0 .5]) 
set(gca,'FontSize',12,'FontWeight','bold') 

  
%% Integrals 
S1=zeros(length(A),length(fdbs)); 
S=zeros(length(A),length(fdbs)); 
for j=1:3 
for i=1:length(fdbs) 
S1(j,i) = -M_I(j,i)*taus*(exp(-T(i)/taus)-1); %The integral of one EPSC at 

the steady state 
S(j,i) = S1(j,i)*i; 
end 
end 

  
area1f=area1(1,:); 
area1d=area1(2,:); 
area1p=area1(3,:); 
areaf=area(1,:); 
aread=area(2,:); 
areap=area(3,:); 
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f_weight=.45; d_weight=.38; p_weight=.18;  
area_tot=f_weight*areaf+d_weight*aread+p_weight*areap; 

  
figure; title('Area under 1 EPSC'); hold on 
for p=1:3 
scatter(fdbs,area1(p,:)); 
hold on 
end 
legend('F','D','P') 
for p=1:3 
plot(fdbs,S1(p,:),'Linewidth',1); 
hold on 
end 
xlabel('DBS frequency (Hz)') 
ylabel('S_1') 
set(gca,'FontSize',12,'FontWeight','bold') 

  
figure; title('Area under EPSCs in 1 second of stimulation'); hold on 
for p=1:3 
scatter(fdbs,area(p,:),'filled'); 
hold on 
end 
scatter(fdbs,area_tot,'filled','k'); 

  
legend('F','D','P','Total') 
% for p=1:3 
% plot(fdbs,S(p,:),'Linewidth',1); 
% hold on 
% end 
% plot(ff,sf,'LineWidth',1) 
xlabel('DBS frequency (Hz)') 
ylabel('S') 
set(gca,'FontSize',12,'FontWeight','bold') 

 

 

 

 

 

 

 

 

 

 



73 
 

 

MATLAB code for LIF Neuron Model 

%%%%%% This code computes an LIF neuron activity before and during DBS. 
tic 
clearvars 

  
% transmission + synaptic delay: td  
td=2; %2 ms for trasmission and .5 ms for synaptic delay 

  
dt=1; ti=dt; tf=1500+td;%tf=1500+td;%tf=61000+td; %in mili seconds  
t=ti:dt:tf; 

  
% DBS input 
fdbs=130; 
T=ones(1,length(fdbs)); 
% dbsi=(100)/dt; dbsf=1100/dt; %in mili seconds 
dbsi=(dt)/dt; dbsf=1500/dt; 

  
%Poissonian input 
fr=10; %for fr Hz baseline poissonian firing from other cells  
[spikes,tsp]=poissonSpikeGen(fr,tf/1000,1,dt/1000); 
tp=find(spikes==1);  
% ssp=zeros(1,length(t)); 
% ssp(tp)=1; %uncomment for stochastic model (adding noise to the system) 

  
%noise term 
% wght=0;   %no noise 
wght=.5; %default noise 
% wght=5;   %high noise 
kisi=wght*randn(1,length(t)); 

  
% I Kernel time constant 
taus=3;  %For excitatory synapse 

  
% transmission + synaptic delay: td  
td=td/dt; %convert to simulation step scale 

  
%input spike train 
sp=zeros(length(fdbs),length(t)); 

  
% Synapse parameters % Each column 1,2,3 means F,D,P respectively and each 

row means 
% Excitatory and inhibitory synapse (1: excitatory, 2: inhibitory) 
% In this study we just used the first row, excitstory synapses. 
tauf=[670,17,326; 376,21,62]; 
taud=[138,671,329; 45,706,144]; 
U=[.09,.5,.29; .016,.25,.32]; 
A=[.0025,.0025,.0025; .0025,.0025,.0025]; 
% n=10; A=n*A;  % change the strength of A (order of magnitude of totall 

number of synapses) 
ie=ones(1,2); 
w=1; 

  
fid=2.5; %synaptic fidelity  
we=fid*200; wi=0;  
% Percentage of excitatory and inhibitory synapses: 
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ne=we*[45,38,17]; %original: 45,38,17 
% ne=zeros(1,3); 
% for 1 synapse n1=1 and so forth (approximately giving 2 pA exc. current) 
% ne=10;  % for 10 synapses (approximately giving 20 pA exc. current) 
% ne=100; % for 100 synapses (approximately giving 200 pA exc. current) 
% ne=1000;% for 1000 synapses (approximately giving 2 nA exc. current) 
% ni=wi*[13,10,6];     % for 1 synapse (approximately giving 10 pA 

inhibitory current) 
ni=wi*[8,76,16]; %ne=ni; 
% ni=zeros(1,3); 
% ni=10;  % for 10 synapses (approximately giving 100 pA inh. current) 
% ni=100; % for 100 synapses (approximately giving 1 nA inh. current) 
% ni=1000;% for 1000 synapses (approximately giving 10 nA inh. current) 
A=[ne.*A(1,:);ni.*A(2,:)]; 

  
% Compute EPSC 
u=zeros(length(fdbs),length(t)); 
x=ones(length(fdbs),length(t)); 
I=zeros(length(fdbs),length(t)); 
Iwo=zeros(length(fdbs),length(t)); 
% It=zeros(length(fdbs),length(t)); 
PSC=zeros(length(ie),length(A),length(fdbs),length(t)); 
% IPSC=zeros(length(A),length(fdbs),length(t)); 

  
% Compute EPSP (passive mechanism, membrane potential) 
tau_memb=40; 
r=10^2;   %M Ohm 
v=zeros(length(fdbs),length(t)); 
PSP=zeros(length(ie),length(A),length(fdbs),length(t)); 
% IPSP=zeros(length(A),length(fdbs),length(t)); 

  
% Neuron parameters: (for ~20 Hz base firing .56 and for ~8-10 Hz choose 

.26) 
Cm= 1; Rm=100; Ie=.26; %(for deterministic model) 
% Ie=.16; %subthreshold firing (for noise purpose, stochastic model) 
El=-70; Vth=-54;  
Vreset=-80; 

  
% % Neuron parameters: (for 62.5 Hz base firing) 
% Cm= 1; Rm=100; Ie=1.52; %(for deterministic model) 
% % Ie=.18; %subthreshold firing (for noise purpose, stochastic model) 
% El=-70; Vth=-54;  
% Vreset=-80; 

  
% Compute neuron firing pattern with and without synaptic input: 
V=zeros(length(fdbs),length(t)); 
Vn=zeros(length(ie),length(A),length(fdbs),length(t)); 
V_all=zeros(length(fdbs),length(t)); 
% Vn_all=zeros(length(ie),length(A),length(fdbs),length(t)); 
Vin=zeros(1,length(t)); 

  
wk=10; %Poissonian weight 
poiss=wk*rand(1,length(sp)).*sp(1,:); 
for i=1:length(t)-1 
Vin(i+1) = Vin(i) + (dt/Cm)*(((El-Vin(i))/Rm) + Ie + poiss(i) + kisi(i)); 
if Vin(i+1)>= Vth+kisi(i) 
    Vin(i)=0+kisi(i); 
    Vin(i+1)=Vreset+kisi(i); 
end 
end 
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for q=1:length(ie) 
    if q==1  
        w=1; 
    else 
        w=-1; 
    end 
for p=1:length(A) 
    for j=1:length(fdbs) 
        T(j)=round((1000/fdbs(j))/dt); 
        dbs=dbsi:T(j):dbsf; 
        ts=[tp,dbs]; %uncomment for Poissonian+DBS 
%         ts=dbs;      %uncomment for DBS only 
        sp(j,ts)=1/dt; 
            for i=td+1:length(t)-1   
                u(j,(i+1)) = u(j,i) + dt*(-(u(j,i)/tauf(q,p))+U(q,p)*(1-

u(j,i))*sp(j,i-td));  
                x(j,(i+1)) = x(j,i) + dt*((1/taud(q,p))*(1-x(j,i)) - 

u(j,i+1)*x(j,i)*sp(j,i-td)); 
                I(j,(i+1)) = I(j,i) + dt*((-1/taus)*I(j,i) + 

A(q,p)*u(j,i+1)*x(j,i)*sp(j,i-td)); 
                Iwo(j,(i+1)) = Iwo(j,i) + dt*((-1/taus)*Iwo(j,i) + 

A(q,p)*sp(j,i-td)); 
                v(j,(i+1)) = v(j,i) + dt*(((-v(j,i)+r*I(j,i)))/tau_memb); 
                %Replace I with Iwo for no depletion of synaptic conduction 
                V(j,(i+1)) = V(j,i) + (dt/Cm)*(((El-V(j,i))/Rm) +Ie + 

w*I(j,i) + poiss(i)+ kisi(i)); 
                    if  V(j,i+1)>= Vth+kisi(i) 
                        V(j,i)=0+kisi(i); 
                        V(j,i+1)=Vreset+kisi(i); 
                    end 
            end 
            %replace I with Iwo for no depletion 
        PSC(q,p,j,:)= w*I(j,:); %IPSC(p,j,:)= -I(j,:); 
        PSP(q,p,j,:)= w*v(j,:); %IPSP(p,j,:)= -v(j,:); 
        Vn(q,p,j,:)= V(j,:); 

  
    end 
end 
end 

  
PSC_exc=sum(PSC(1,:,:,:),2); 
PSC_inh=sum(PSC(2,:,:,:),2); 
PSC_all=PSC_exc+PSC_inh; 

  
PSP_exc=sum(PSP(1,:,:,:),2); 
PSP_inh=sum(PSP(2,:,:,:),2); 
PSP_all=PSP_exc+PSP_inh; 

  
for j=1:length(fdbs) 
for i=1:length(t)-1   
                V_all(j,(i+1)) = V_all(j,i) + (dt/Cm)*(((El-V_all(j,i))/Rm) 

+ PSC_all(1,1,j,i) +Ie + poiss(i) + kisi(i)); 
                    if  V_all(j,i+1)>= Vth+kisi(i) 
                        V_all(j,i)=0+kisi(i); 
                        V_all(j,i+1)=Vreset +kisi(i); 
                    end 
end 
end 
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%% Make figure with arbitrary selection of synapse and DBS frequency 

(Figure 4 in the paper) 
EI=1;    % Choose 1 for excitatory and 2 for inhibitory 
syn=1;   % Choose 1 for F, 2 for D and 3 for P synaptic types 
freq=1;  % The desired DBS frequency to be illustrated 
figure; 
ax1=subplot(4,1,1); 
hold on 
title(['Neuron activity pattern from excitatory synapses at DBS 

',num2str(fdbs),'Hz'],'FontSize',14,'FontWeight','bold') 
plot(t,sp(freq,:),'LineWidth',1); zoom xon; 

ylabel('Input','FontSize',13,'FontWeight','bold') 
ax2=subplot(4,1,2); 
plot(t,squeeze(PSC(EI,syn,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
hold on 
plot(t,squeeze(PSC(EI,syn+1,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
hold on 
plot(t,squeeze(PSC(EI,syn+2,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
legend('F','D','P') 
ylim([0 15]) 
ax3=subplot(4,1,3); 
plot(t,squeeze(PSC_all(1,1,freq,:)),'LineWidth',1);   
ylabel('Total EPSC (nA)','FontSize',13,'FontWeight','bold') 
ylim([0 15]) 
ax4=subplot(4,1,4); 
plot(t,squeeze(Vn(EI,syn,freq,:)),'LineWidth',1); 
hold on 
plot(t,Vin,'--','Color','r','LineWidth',1);  
legend('with TM synaptic dynamics','without TM synaptic dynamics') 
ylabel({'Model neurn potential';' with and without synapse';' 

(mv)'},'FontSize',13,'FontWeight','bold') 
xlabel('Time (ms)','FontSize',13,'FontWeight','bold');  
ylim([-100 5]) 
linkaxes([ax1,ax2,ax3,ax4],'x') 
%% Compute firing rate of the LIF neuron without synaptic input: 
r_isi_without_syn=(1000/dt)*length(find(Vin(dbsi:dbsf)>=Vth))/((dbsf-

dbsi)); 
disp(['LIF rate without any synaptic connection = 

',num2str(r_isi_without_syn),' (Hz)']) 
%% Compute firing rate of the LIF neuron with synaptic input: 
r_isi_with_syn=(1000/dt)*length(find(Vn(EI,syn,freq,dbsi:dbsf)>=Vth))/((dbs

f-dbsi)); 
disp(['LIF rate with a fraction of synapses during 

DBS',num2str(freq*10),'Hz = ',num2str(r_isi_with_syn),' (Hz)']) 
%% Compute firing rate of the LIF neuron with all synaptic inputs: 
r_isi_with_all_syn=(1000/dt)*length(find(V_all(freq,dbsi:dbsf)>=Vth))/((dbs

f-dbsi)); 
disp(['LIF rate with all synapses during DBS', num2str(freq*10),'Hz = 

',num2str(r_isi_with_all_syn),' Hz']) 
%% Raster plot (Figure 5 in the paper) and PSTH for 130 Hz: 
for q=1  
    for sq=1:2 
dbsT=round((1000/fdbs(q)/dt)); 
width=1; 
edges=0:width:dbsT; 
psth=zeros(1,round(dbsT/width)+1); 
figure; 
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title(['LIF neuron raster plot at DBS ',num2str(fdbs(q)),' Hz, fidelity= 

',num2str(fid*100),'%'],'FontSize',14,'FontWeight','bold');  
xlabel('DBS pulse time period(ms)','FontSize',13); 
ylabel('Stimulation time(sec)','FontSize',13); 
hold on 

  
if sq==1 
for i=dbsi:dbsT:dbsf-dbsT  
    [xx,zz]=find(V_all(q,(i:i+dbsT))>=Vth); 
    hh=hist(zz,edges); 
    psth=psth+hh;    
scat=scatter(zz*dt,(i*dt/1000)*ones(1,length(xx)),'k','filled'); hold on 
end 
axis ij 
%axis off 
xlim([0 dbsT*dt]) 
%  ylim([0 60]) 

  
figure; 
plot(edges*dt,psth,'LineWidth',1); 
xlabel('DBS pulse time period (ms)') 
ylabel('Number of spikes') 
xlim([0 dbsT*dt]) 
hold on 
set(gca,'FontSize',14,'FontWeight','bold') 
% saveas(fig,['DBS_',num2str(fdbs(q)),num2str(fid),'fidelity'],'jpg') 
end 

  
if sq==2 
for i=dbsi:dbsT:dbsf-dbsT  
    [xx,zz]=find(V_all(q,(i:i+dbsT))>=Vth); 
    hh=hist(zz,edges); 
    psth=psth+hh;    
scat=scatter(zz*dt,(i*dt/1000)*ones(1,length(xx)),121,'k','square','MarkerF

aceColor','k'); hold on 
end 
axis ij 
% axis off 
xlim([0 dbsT*dt])  
% ylim([42 42.2]) 
set(gca,'FontSize',14,'FontWeight','bold') 
end 
    end 
end 
toc 
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MATLAB code for MLIF Neuron Model 

%%%%%% This code computes an MLIF neuron activity before and during DBS. 
tic  
clearvars 

  
% transmission + synaptic delay: td  
td=2; %2 ms for trasmission and .5 ms for synaptic delay 

  
dt=1; ti=dt; tf=1500+td;%tf=1500+td;%tf=61000+td; %in mili seconds  
t=ti:dt:tf; 

  
% DBS input 
fdbs=130; 
T=ones(1,length(fdbs)); 
% dbsi=(100)/dt; dbsf=1100/dt; %in mili seconds 
dbsi=(dt)/dt; dbsf=1500/dt; 

  
%Poissonian input 
fr=10; %for fr Hz baseline poissonian firing from other cells  
[spikes,tsp]=poissonSpikeGen(fr,tf/1000,1,dt/1000); 
tp=find(spikes==1);  
% ssp=zeros(1,length(t)); 
% ssp(tp)=1; %uncomment for stochastic model (adding noise to the system) 

     
%noise term 
% wght=0;   %no noise 
wght=.5; %default noise 
% wght=5;   %high noise 
kisi=wght*randn(1,length(t)); 

  
% I Kernel time constant 
taus=3;  %For excitatory synapse 

  
% transmission + synaptic delay: td  
td=td/dt; %convert to simulation step scale 

  
%input spike train 
sp=zeros(length(fdbs),length(t)); 

  
% Synapse parameters % Each column 1,2,3 means F,D,P respectively and each 

row means 
% Excitatory and inhibitory synapse (1: excitatory, 2: inhibitory) 
% In this study we just used the first row, excitstory synapses. 
tauf=[670,17,326; 376,21,62]; 
taud=[138,671,329; 45,706,144]; 
U=[.09,.5,.29; .016,.25,.32]; 
A=[.0025,.0025,.0025; .0025,.0025,.0025]; 
% n=10; A=n*A;  % change the strength of A (order of magnitude of totall 

number of synapses) 
ie=ones(1,2); 
w=1; 

  
fid=2.5; %synaptic fidelity  
we=fid*200; wi=0;  
% Percentage of excitatory and inhibitory synapses: 
ne=we*[45,38,17]; %original: 45,38,17 
% ne=zeros(1,3); 
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% for 1 synapse n1=1 and so forth (approximately giving 2 pA exc. current) 
% ne=10;  % for 10 synapses (approximately giving 20 pA exc. current) 
% ne=100; % for 100 synapses (approximately giving 200 pA exc. current) 
% ne=1000;% for 1000 synapses (approximately giving 2 nA exc. current) 
% ni=wi*[13,10,6];     % for 1 synapse (approximately giving 10 pA 

inhibitory current) 
ni=wi*[8,76,16]; %ne=ni; 
% ni=zeros(1,3); 
% ni=10;  % for 10 synapses (approximately giving 100 pA inh. current) 
% ni=100; % for 100 synapses (approximately giving 1 nA inh. current) 
% ni=1000;% for 1000 synapses (approximately giving 10 nA inh. current) 
A=[ne.*A(1,:);ni.*A(2,:)]; 

  
% Compute EPSC 
u=zeros(length(fdbs),length(t)); 
x=ones(length(fdbs),length(t)); 
I=zeros(length(fdbs),length(t)); 
Iwo=zeros(length(fdbs),length(t)); 
% It=zeros(length(fdbs),length(t)); 
PSC=zeros(length(ie),length(A),length(fdbs),length(t)); 
% IPSC=zeros(length(A),length(fdbs),length(t)); 

  
% Compute EPSP (passive mechanism, membrane potential) 
tau_memb=40; 
r=10^2;   %M Ohm 
v=zeros(length(fdbs),length(t)); 
PSP=zeros(length(ie),length(A),length(fdbs),length(t)); 
% IPSP=zeros(length(A),length(fdbs),length(t)); 

  
% % % Neuron parameters: (for ~20 Hz base firing .56 and for ~8-10 Hz 

choose .26)  
Cm= 1; Rm=100; Ie=.26; %(for deterministic model)  
% Ie=.16; %subthreshold firing (for noise purpose, stochastic model) 
El=-70; Vth=-54;  
Vreset=-80; 

  

  
% % % Neuron parameters: (for 62.5 Hz base firing) 
% Cm= 1; Rm=100; %Ie=1.52; %(for deterministic model) 
% Ie=.18;  %subthreshold firing (for noise purpose, stochastic model) 
% El=-70;Vth=-54; 
% Vreset=-80; 

  
% Compute neuron firing pattern with and without synaptic input: 
V=zeros(length(fdbs),length(t)); 
Vn=zeros(length(ie),length(A),length(fdbs),length(t)); 

  
V_all=zeros(length(fdbs),length(t)); 
d=linspace(-0.5*10^(-4),0.5*10^(-4),1502); 
q1=d.*ones(1,length(t)); 
tau_m=zeros(1,length(t)); 
o=linspace(-0.75,0.25,1502); 
psi=o.*ones(1,length(t)); 
M=zeros(1,length(t)); 
% Vn_all=zeros(length(ie),length(A),length(fdbs),length(t)); 
Vin=zeros(1,length(t)); 

  
wk=10; %Poissonian weight; 
poiss=wk*rand(1,length(sp)).*sp(1,:); 
for i=1:length(t)-1 



80 
 

      if q1(i)<(-0.5*10^(-4)) 
        M(i)=20000;  
    elseif q1(i)>=(-0.5*10^(-4)) & q1(i)<(0.5*10^(-4)) 
        M(i)=10^(4)+(-1.99)*10^(8)*q1(i); 
    else 
        M(i)=100; 
    end 
    if psi(i)<(-0.75) 
        tau_m(i)=20000*q1(i)/Vin(i); 
    elseif psi(i)>=(-0.75) & psi(i)<(0.25) 
        tau_m(i)=(10^(4)*q1(i)/Vin(i))+((-1.99)*10^(8)*q1(i)*q1(i))/Vin(i); 
    else 
        tau_m(i)=100*q1(i)/Vin(i); 
    end 

        

     
Vin(i+1) = Vin(i)+ (dt/tau_m(i))*(El-Vin(i) + M(i)*(Ie+ poiss(i) + 

kisi(i)));  
if Vin(i+1)>= Vth+kisi(i) 
    Vin(i)=0+kisi(i); 
    Vin(i+1)=Vreset+kisi(i); 
end 
end 

  
for q=1:length(ie)  
    if q==1  
        w=1; 
    else 
        w=-1; 
    end 
for p=1:length(A) 
    for j=1:length(fdbs) 
        T(j)=round((1000/fdbs(j))/dt); 
        dbs=dbsi:T(j):dbsf; 
        ts=[tp,dbs]; %uncomment for Poissonian+DBS 
%         ts=dbs;      %uncomment for DBS only 
        sp(j,ts)=1/dt; 
            for i=td+1:length(t)-1   
                u(j,(i+1)) = u(j,i) + dt*(-(u(j,i)/tauf(q,p))+U(q,p)*(1-

u(j,i))*sp(j,i-td));  
                x(j,(i+1)) = x(j,i) + dt*((1/taud(q,p))*(1-x(j,i)) - 

u(j,i+1)*x(j,i)*sp(j,i-td)); 
                I(j,(i+1)) = I(j,i) + dt*((-1/taus)*I(j,i) + 

A(q,p)*u(j,i+1)*x(j,i)*sp(j,i-td)); 
                Iwo(j,(i+1)) = Iwo(j,i) + dt*((-1/taus)*Iwo(j,i) + 

A(q,p)*sp(j,i-td)); 
                v(j,(i+1)) = v(j,i) + dt*(((-v(j,i)+r*I(j,i)))/tau_memb); 
                %Replace I with Iwo for no depletion of synaptic conduction                
                V(j,(i+1)) = V(j,i) + (dt/tau_m(i))*(El-Vin(i) + 

M(i)*(w*I(j,i) +Ie+ poiss(i) + kisi(i))); 
                    if  V(j,i+1)>= Vth+kisi(i) 
                        V(j,i)=0+kisi(i); 
                        V(j,i+1)=Vreset+kisi(i); 
                    end 
            end 
            %replace I with Iwo for no depletion 
        PSC(q,p,j,:)= w*I(j,:); %IPSC(p,j,:)= -I(j,:); 
        PSP(q,p,j,:)= w*v(j,:); %IPSP(p,j,:)= -v(j,:); 
        Vn(q,p,j,:)= V(j,:); 
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    end 
end  
end 

  
PSC_exc=sum(PSC(1,:,:,:),2); 
PSC_inh=sum(PSC(2,:,:,:),2); 
PSC_all=PSC_exc+PSC_inh; 

  
PSP_exc=sum(PSP(1,:,:,:),2); 
PSP_inh=sum(PSP(2,:,:,:),2); 
PSP_all=PSP_exc+PSP_inh; 

  
for j=1:length(fdbs) 
for i=1:length(t)-1   
                V_all(j,(i+1)) = V_all(j,i) + (dt/tau_m(j,i))*(El-

V_all(j,i)+ M(j,i)*(PSC_all(1,1,j,i) +Ie+ poiss(i) + kisi(i))); 
                    if  V_all(j,i+1)>= Vth+kisi(i) 
                        V_all(j,i)=0+kisi(i); 
                        V_all(j,i+1)=Vreset +kisi(i); 
                    end 
end 
end 

             
%% Make figure with arbitrary selection of synapse and DBS frequency 

(Figure 4 in the paper) 
EI=1;    % Choose 1 for excitatory and 2 for inhibitory 
syn=1;   % Choose 1 for F, 2 for D and 3 for P synaptic types 
freq=1;  % The dseired DBS frequency to be illustrated 
figure; 
ax1=subplot(4,1,1); 
hold on 
title(['Neuron activity pattern from excitatory synapses at DBS 

',num2str(fdbs),'Hz'],'FontSize',14,'FontWeight','bold') 
plot(t,sp(freq,:),'LineWidth',1); zoom xon; 

ylabel('Input','FontWeight','bold') 
ax2=subplot(4,1,2); 
plot(t,squeeze(PSC(EI,syn,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
hold on 
plot(t,squeeze(PSC(EI,syn+1,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
hold on 
plot(t,squeeze(PSC(EI,syn+2,freq,:)),'LineWidth',1); ylabel('EPSC 

(nA)','FontSize',13,'FontWeight','bold') 
legend('F','D','P') 
ylim([0 15]) 
ax3=subplot(4,1,3); 
plot(t,squeeze(PSC_all(1,1,freq,:)),'LineWidth',1);   
ylabel('Total EPSC (nA)','FontWeight','bold') 
ylim([0 15]) 
ax4=subplot(4,1,4); 
plot(t,squeeze(Vn(EI,syn,freq,:)),'LineWidth',1); 
hold on 
plot(t,Vin,'--','Color','r','LineWidth',1); 
legend('with TM synaptic dynamics','without TM synaptic dynamics') 
ylabel({'Model neuron potential';' with and without synapse';' 

(mv)'},'FontSize',13,'FontWeight','bold') 
xlabel('Time (ms)','FontWeight','bold');  
ylim([-100 5]) 
linkaxes([ax1,ax2,ax3,ax4],'x') 
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%% Compute firing rate of the LIF neuron without synaptic input: 
r_isi_without_syn=(1000/dt)*length(find(Vin(dbsi:dbsf)>=Vth))/((dbsf-

dbsi)); 
disp(['MLIF rate without any synaptic connection = 

',num2str(r_isi_without_syn),' (Hz)']) 
%% Compute firing rate of the LIF neuron with synaptic input: 
r_isi_with_syn=(1000/dt)*length(find(Vn(EI,syn,freq,dbsi:dbsf)>=Vth))/((dbs

f-dbsi)); 
disp(['MLIF rate with a fraction of synapses during 

DBS',num2str(freq*10),'Hz = ',num2str(r_isi_with_syn),' (Hz)']) 
%% Compute firing rate of the LIF neuron with all synaptic inputs: 
r_isi_with_all_syn=(1000/dt)*length(find(V_all(freq,dbsi:dbsf)>=Vth))/((dbs

f-dbsi)); 
disp(['MLIF rate with all synapses during DBS', num2str(freq*10),'Hz = 

',num2str(r_isi_with_all_syn),' Hz']) 
%% Raster plot (Figure 5 in the paper) and PSTH for 130 Hz: 
for q=1  
    for sq=1:2 
dbsT=round((1000/fdbs(q)/dt)); 
width=1; 
edges=0:width:dbsT; 
psth=zeros(1,round(dbsT/width)+1); 
figure; 
title(['MLIF neuron raster plot at DBS ',num2str(fdbs(q)),' Hz, fidelity= 

',num2str(fid*100),'%'],'FontSize',14,'FontWeight','bold'); 
xlabel('DBS pulse time period(ms)','FontSize',13); 
ylabel('Stimulation time(sec)','FontSize',13); 
hold on 

  
if sq==1 
for i=dbsi:dbsT:dbsf-dbsT  
    [xx,zz]=find(V_all(q,(i:i+dbsT))>=Vth); 
    hh=hist(zz,edges); 
    psth=psth+hh;    
scat=scatter(zz*dt,(i*dt/1000)*ones(1,length(xx)),16,'k','filled'); hold on 
end 
axis ij 
% axis off 
xlim([0 dbsT*dt]) 
% ylim([0 60]) 

  
figure; 
plot(edges*dt,psth,'LineWidth',1); 
xlabel('DBS pulse time period (ms)') 
ylabel('Number of spikes') 
xlim([0 dbsT*dt])  
hold on 
set(gca,'FontSize',14,'FontWeight','bold') 
% saveas(fig,['DBS_',num2str(fdbs(q)),num2str(fid),'fidelity'],'jpg') 
end 

  
if sq==2 
for i=dbsi:dbsT:dbsf-dbsT  
[xx,zz]=find(V_all(q,(i:i+dbsT))>=Vth); 
hh=hist(zz,edges); 
psth=psth+hh;    
scat=scatter(zz*dt,(i*dt/1000)*ones(1,length(xx)),121,'k','square','MarkerF

acecolor','k'); hold on 
end 
axis ij 
% axis off 
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xlim([0 dbsT*dt])  
% ylim([42 42.2]) 
set(gca,'FontSize',14,'FontWeight','bold') 
end 
    end 
end 
toc 
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