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ABSTRACT 

 

 

Black holes are the robust predictions of Einstein’s General Relativity. The study 

of the thermodynamics properties of black hole is a major research theme of 

contemporary theoretical physics. In this project work we have studied the 

thermodynamics of Reissner–Nordström , Bardeen black hole and Taub NUT 

blackhole. We have derived the thermodynamic quantities such as Mass, 

Temperature, Entropy, Heat Capacity and Free Energy and plotted their 

variations with respect to entropy. Bardeen black hole shows a smooth variation 

of temperature with respect to entropy, which excludes the chance of first order 

phase transition. Furthermore, the discontinuity in heat capacity for a particular 

value of entropy in Bardeen black hole shows the presence of a second order 

phase transition. For Taub-NUT, heat capacity is negative and it indicates that the 

black hole is unstable and the free energy falls to negative above a certain value. 
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INTRODUCTION 

 

For more than two hundred years, Newton’s theory of gravitation was accepted 

as the valid theory to describe the gravitational force. The framework, provided 

by Newton was considered as extremely successful to describe the motion of 

celestial objects. However, there were several incongruities in this theory such 

as: it could not explain the perihelion precession of Mercury; also, it could not 

explain how the gravitational force comes into play between two objects which 

are very far from each other and not connected via any medium.  

In spite of these limitations, the theory, proposed by Newton, was widely 

regarded as the appropriate theory for gravity as it was highly successful in 

describing the motion of the objects under the influence of gravity. Thus, in 1915, 

when Einstein came up with General Relativity (GR), describing gravity in terms 

of the geometry of the spacetime itself, it took a while for people to accept it as 

the better theory for describing gravity. However, the famous experimental test 

during the solar eclipse of 1919, carried out by Arthur Eddington and Frank 

Dyson, made the theory famous overnight. A few years ago, in 2015, we have 

completed hundred years since Einstein proposed the theory of general relativity 

(GR), which is now considered as one of the most wonderful theories of physics 

ever proposed in the human history. Not only the theory can explain several 

observational phenomena, like the bending of light, perihelion precession of 

Mercury, gravitational lensing, gravitational redshift etc., but also the theory is 

sublime in its mathematical foundation. The recent discovery of gravitational 

waves in 2016, which was also the prediction of Einstein’s GR, has added another 
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feather to the crown of this theory. Time and again, this theory has proved to be 

the most viable theory for gravity. 

A few months after Einstein’s new formulation of GR, in 1916, Karl 

Schwarzschild found the solution of Einstein’s equation for a point mass. About 

the same time, Johannes Droste independently arrived to the same solution. The 

solution had a strange behaviour which, nowadays, known as the Schwarzschild 

radius where the Einstein’s equation becomes infinite. In 1958, David Finkelstein 

identified the surface area of the Schwarzschild radius as the event horizon as it 

acts as a one way membrane and any causal curve can cross it only in one 

direction. This result paved the idea of black hole (BH) and the research on black 

holes became one of the most active areas in theoretical physics till the date.  

Later in 1963, Roy Kerr discovered the solution of the rotating black holes–

known as the Kerr black hole. Meanwhile, the no-hair theorem emerged, which 

states that the stationary black holes can be completely described by only three 

parameters: mass, charge and the angular momentum. For a long time, some 

people doubted the existence of black holes. However, the recent discovery of 

gravitational waves abolished the doubt regarding the real existence of black hole. 

A year ago, in 2019, the first ever image of black hole and its surroundings was 

published, which was observed earlier by Event Horizon Telescope in 2017. 

Now, in the very last month of May, 2022 astronomers have unveiled the first 

image of the supermassive black hole at the centre of our own Milky Way galaxy 

observed by Event Horizon Telescope.  

In the decade of 1970’s, several remarkable works came up which added new 

perception to the study of black hole theory. These new results have shown the   

connection of gravity with the thermodynamics. In one of his famous works, 

Hawking had shown some important results for black holes in general relativity. 

Most importantly, the paper provided the area increase theorem of black hole 

horizon, which states that the horizon area of a black hole horizon always 
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increases when the specific energy condition is satisfied. Bekenstein  realized that 

the black holes must have entropy and he ascribed the entropy of the black hole 

to be proportional to its horizon surface area. Thereafter, the four laws of 

blackhole mechanics were shown by Bardeen, Carter and Hawking, which had 

an astonishing similarity with the four laws of thermodynamics. However, the 

authors in this paper refrain themselves from claiming it as the thermodynamic 

laws of black holes. Instead, they claimed it as an analogy with the conventional 

thermodynamics.   

In fact, this analogy became a robust correspondence with the thermodynamics 

when Hawking revealed that the black holes can radiate when quantum effects 

are taken into the consideration. This radiation was later famously known as the 

Hawking radiation.  Although Hawking initially tried to disapprove Bekenstein’s 

idea about black hole entropy, this work by Hawking justifies the earlier claim by 

Bekenstein and also fix the proportionality constant of black hole entropy with 

the horizon area as 1/4 in natural unit.  

In the meantime, Fulling  Davies  and Unruh  had shown that the accelerating 

observer observes thermal radiation in the Minkowski vacuum whereas the 

inertial observer does not. The temperature of the Unruh particles have the same 

form as of the Hawking temperature, except the surface gravity of black hole 

horizon is replaced by the acceleration of the observer. This radiation was later 

known as the Unruh radiation. The Unruh radiation and the Hawking radiation 

are equivalent on the basis of Einstein’s equivalence principle. These were the 

stepping stone which laid the foundation of black hole thermodynamics. Since 

then, there have been numerous works in the direction of black hole 

thermodynamics and it became one of the most high-yielding domains for the 

theoretical physicists over the years. 

 Later several thermodynamic features were found in black hole thermody- 

namics and the earlier analogies (the area of the black hole horizon as the entropy, 
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surface gravity of the horizon as the temperature etc.) were firmly identified as 

the physical thermodynamic parameters of black holes. 

Phase transition is another important aspect of thermodynamics, which is also 

found in black hole thermodynamics as well and it has been studied for several 

decades. There are several types of phase transitions which are present in black 

hole thermodynamics. It was first introduced by Davies who argued that black 

holes undergo a second order phase transition when it passes through a point, 

which known as the Davies’ point, where the heat capacity diverges. However, 

later Kaburaki et. approved that the Davies’s point is not the critical point. 

Instead, it is a turning point, where the stability changes.   

Another type of black hole phase transition was found in the work of Hawking. 

It was found that a black hole in AdS space makes transition to a no-black-hole 

state (or radiation) at a critical temperature.  In addition, the transition of black 

holes from    a non-extremal to an extremal one is also been found out as a phase 

transition of black holes, which is known as the extremal phase transition. 

 

1.1 GENERAL THEORY OF RELATIVITY 
 

General theory of relativity (GTR), published by Albert Einstein in 1915, is the 

current description of gravitation in modern physics. The general theory of 

relativity is proposed after special theory of relativity (STR). GTR comes to the 

main frame that STR must be modified to include the presence of gravity. This is 

because the STR is similar to dealing Newton’s equations of motion without 

considering friction. When it comes to the realistic situation gravity is inevitable 

so a generalized concept of relativity is needed.  

The Einstein way of describing gravity is to avoid the notion that is a force and it 

is to find suitable non-Euclidean space time geometry and matter under no force 

moving in straight line trajectories with uniform speed as measured in terms of 
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the rules of the new geometry. General relativity pictures gravity as a warping of 

space time due to the presence of a body of matter. An object nearby experiences 

an attractive force as a result of this distortion, much as a marble roll towards the 

bottom of depression in a rubber sheet. According to J. A. Wheeler, spacetime 

tells mass how to move, and mass tells space time how to curve.  

The principle of equivalence is central to general relativity. An observer in a 

closed laboratory cannot distinguish between the effect produced by a 

gravitational field and those produced by an acceleration of the laboratory. To 

understand this, consider two observers. Let of them be in a room which is at rest 

in a uniform gravitational field at the surface of earth and the second observer be 

in a room inside a rocket accelerating at g. Now if the former drops a pebble, it 

will accelerate towards the floor with acceleration g. This would be the same 

situation happening to the second observer.  i.e. in both cases the observers are 

unable to distinguish the two situations by local experiments. This cancellation 

of gravitational fields by inertial forces is applicable to all freely falling systems. 

So that no local experiments can be distinguish between uniform inertial and 

gravitational accelerations. 

 

1.2 THE SPACE TIME METRIC 

 We use a coordinate system to map the space around us. Consider the collection 

of all possible events that occur in the universe- that can be happened in the past, 

events happening now or the one that will happen in the future. The collection of 

these events is called spacetime. Let us assume that we use a linear coordinate 

system, so that we can use linear algebra to describe it. Physical objects can then 

be described in terms of the basis-vectors belonging to the coordinate system. 

 Let (x, y, z) denote a Cartesian coordinate system and that would give the spatial 

location of the event and t, the time measured by an observer O at rest in an 
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inertial frame , that is an observer who is acted on by no force. Let two 

neighbouring events in space and time be labelled by the coordinates (x, y, z, t) 

and (x + dx, y + dy, z + dz, t + dt). The square of the ‘distance’ between the two 

events is given by  

       𝑑𝑠2 = 𝑐2 𝑑𝑡2 − 𝑑𝑥2 − 𝑑𝑦2 − 𝑑𝑧2          

The distance ds is invariant under Lorentz transformation, in the sense that if 

another inertial observer O’ using a different coordinate system (x’, y’, z’, t’) to 

measure this distance will find the same answer. The above equation is the one 

commonly used in special theory, when we transform from special theory to 

general theory, the presence of gravitation requires a more complicated form. 

This can be conveniently written as,  

     𝑑𝑠 2 = ∑ 3i,k=0
  𝑔ⅈ𝑘𝑑𝑥 ⅈ𝑑𝑥𝑘                              

with i =1, 2, 3 representing the three space coordinates and i = 0 the time 

coordinate. Here 𝑔ⅈ𝑘 are the components of a second rank tensor. The matrix 

elements representing the tensors are the coefficient functions that multiply the 

differentials in the metric. The expressions for 𝑑𝑠2 is referred to as the metric. 

Now for convenience we can drop the summation symbol Σ by using Einstein’s 

summation convention (For example, ∑3
i=0  𝐴ⅈ𝐵ⅈ  can be written as 𝐴ⅈ𝐵 ⅈ ) the rule 

being that, whenever an index appears once as a subscript and once as a 

superscript in the same expression, it is automatically summed over all the values 

(here it is from 0 to 3) . Thus, we can write 

                       𝑑𝑠 2 = 𝑔ⅈ𝑘𝑑𝑥 ⅈ 𝑑𝑥k . 

 

1.3 EINSTEIN’S FIELD EQUATIONS 

The ground breaking discovery of General theory of relativity was that it 

describes gravity as the effect of curvature in the fabric of spacetime geometry, a 
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4- dimensional picture that unifies space and time into a single framework. 

Coming to the field equations,  

𝑅𝑎𝑏 − 
1

2
𝑔𝑎𝑏𝑅 = 

8𝜋𝐺

𝐶4  𝑇𝑎𝑏,          

where 𝑅𝑎𝑏 is the Ricci curvature tensor, 𝑇𝑎𝑏is the stress-energy tensor, 𝑔𝑎𝑏 is 

the metric tensor 𝑅 is the Scalar curvature, 𝐺 is the Newtonian constant of 

gravitation and 𝑐 is the speed of light in vacuum. It consists of a coupled system 

of ten partial differential equations. The right hand side of the equation describes 

the distribution of the mass and energy, whereas the left-hand side describes the 

geometry of space time.  

In other words, Einstein’s field equations give how mass and energy curve 

spacetime give rise to gravity. The right-hand side of the equation would be zero 

if there are no matter fields. Those are known as vacuum Einstein field equation. 

Einstein, using his field equations, predicted the perihelion motion of planet 

mercury; explained the bending of light in the vicinity of sun and the gravitational 

red shift. 

 

1.4 BASIC THERMODYNAMICS 

Thermodynamics is a branch of physics that deals with heat, work, and 

temperature, and their relation to energy, radiation, and physical properties of 

matter. It describes how thermal energy is converted to and from other forms of 

energy and how it affects matter. Thermal energy is the energy a substance or 

system has due to its temperature .The study of thermodynamics deals with 

systems having large number of particles enclosed in a surrounding. It can be a 

liquid in vacuum flask or a canister of gas and the walls of the system prevents 

the exchange of energy. An ideal insulating wall is purely a theoretical notion. So 

when coming to the real experiments, the wall would not be perfect insulators. 
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The observations of these experiments are now formulated to be the laws of 

thermodynamics. The study of thermodynamics can follow two paths, classical 

thermodynamics and statistical thermodynamics. The former approach 

concentrates on the gross behaviour of matter, evaluate measurable properties and 

analyse energy interactions, whereas the latter deals with the statistical s 

1.4.1 Thermodynamic equilibrium 

When the energy flow stops between the systems and all measurable properties 

are independent of time, the combined system is said to be in equilibrium. 

Consider an example to describe the state equilibrium. Consider two closed 

canisters, each having a piston attached to it. Let the piston be pinned so as to 

make the system rigid. Let the pistons be attached by a rod in common so that 

moving one piston moves the second. If we let the pin that place the piston in 

place to move, the two pistons move. Both the pistons may not have the same 

pressure and does not move alike, but after sometime the pistons would stop 

moving, making the pressure on the two pistons equal. This can be described as 

a state of equilibrium. There are three different aspects of equilibrium between 

systems. When there is no unbalanced force in the interior of a system and also 

none between a system and surroundings the system is said to be in a state of 

mechanical equilibrium.  

 

When a system in mechanical equilibrium does not tend to undergoes a 

spontaneous change of internal structure such as chemical reaction or a transfer 

of matter from one part of the system to another such as diffusion or solution, 

however slow then it is said to be in a state of chemical equilibrium. Thermal 

equilibrium exists when there is no spontaneous change in the coordinates of a 

system in mechanical and chemical equilibrium when it is separated from its 

surroundings by a diathermic wall. All parts of system are at the same temperature 

and this temperature is the same as that of surroundings  
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When these conditions are not satisfied a change of state will take place until 

thermal equilibrium is reached. When the conditions for all three types of 

equilibrium are satisfied the system is said to be in a state of thermodynamic 

equilibrium. 

 

1.4.2 Laws of thermodynamics  

Fowler discovered the phenomenon of thermal equilibrium in 1935. All the three 

laws of thermodynamics were discovered before 1935 thus newly discovered law 

was named the Zeroth law of thermodynamics.  

Zeroth law states that if systems A and B are separately in thermal equilibrium 

with C, then systems A and B are in thermal equilibrium with each other. The law 

indicates that when system A and B are placed in contact with each other, no 

property of either system A or B changes with time which indicates that no energy 

flows between them if the system are in same temperature. 

First Law of Thermodynamics states that a small amount o heat given to a system 

is partly used in doing external work and partly to increase the internal energy. 

Consider a quantity called the internal energy of the system, denoted by the 

symbol U. We choose U to ensure that the total energy of the system is constant. 

To preserve the law of conservation of energy we write the change in internal 

energy from its initial value Ui to its final value U𝑓 as  

                         ΔU = 𝑈𝑓 − 𝑈ⅈ  

                         ΔU = W + Q   

where Q is defined as the heat which is added to the system,  W is the work done 

on the system. The change in the internal energy is the sum of the work done on 

the system and the heat added. The first law of thermodynamics says that energy 

is conserved if heat is taken into account. 
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The limitation of the first law is that it doesn’t tell us about the direction in which 

the process occurs. This limitation was solved by the discovery of the second law. 

Second Law of thermodynamics states that Energy prefers to flow from a body 

with higher temperature to one with a lower temperature. Heat will not flow 

spontaneously from a cold object to a hot object. 

Statement of the second law due to Clausius: It is impossible to construct a 

machine which operating in a cycle produces no other effect than to transfer heat 

from a colder to a hotter body. It is not possible for heat to flow from a colder 

body to a warmer body without any work having been done to accomplish this 

flow. Another statement of the second law is due to Kevin and Planck: It is 

impossible for an engine, operating in a cycle to take heat from a single reservoir, 

produce an equal amount of work and to have no other effect. It is impossible to 

extract an amount of heat QH from a hot reservoir and use it all to do work W. 

Some amount of heat QC must be exhausted to a cold reservoir. This precludes a 

perfect heat engine. 

 

Now, before going through the statement of third law, we have to know about 

Entropy which is measure of a system's thermal energy per unit temperature that 

is unavailable for doing useful work. Entropy is a thermal inertia of the system. 

Only changes in entropy of a system can be calculated. It is a point function and 

is an extensive property of the system. Entropy is constant in a                                        

reversible adiabatic process. It is defined as  

                                                   ds=
δQ

𝑇
 J/K 

Nernst suggested that Entropy change of a transformation between phases 

approaches zero when Temperature approaches zero. And this led to the Third 
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Law of Thermodynamics. If entropy of every element in its stable state is taken 

to be zero, then every substance has a positive entropy which at T=0 may become 

zero. Entropy become zero for all perfectly ordered states of condensed matter. 

Third law excludes disordered materials. 

To simplify the analysis of the system, the laws are reformulated to change the 

variables. The  method  Legendre differential transformations is used to to change 

the variable and that would yield functions that are fundamentally important in 

thermodynamics. 

If a function of two variables f (x,y) describes the state of a system, which satisfies 

the equation  

                                 df =u dx + v dy  

and to change the description to one involving a new function g (u, y), satisfying 

similar equation in terms of du and dy, then the necessary Legendre transform  

                               g (u, y) is g=f – ux. 

 The g satisfies the equation  

                              dg= -x du+ v dy. 

 Now, consider a characteristic function H, called enthalpy defined as 

                               H = U + PV  

Since internal energy, U; pressure, P; volume, V are all state functions; H is also 

a state function. 

In differential form,  

                               dH = V dP+ TdS,  

 where H is a function characterized by P and S. 

The first law can be written as,  
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                               dU = TdS – PdV 

The requirement for a characteristic function other than enthalpy was met by 

defining the Helmholtz free energy and is given by  

                                A = U – TS 

In differential form,  

                                dA = - SdT – PdV  

 where A is a function of T and V. 

Gibbs function G, is generated by a Legendre transformation of 

                                 dH = TdS + VdP  

                           i.e., G = H - TS  

 which is also a state function.  

In differential form   

                                  dG = VdP – SdT   

 where G is a function characterized by P and T 

Characteristic functions U (V, S), H (P, S), A (V, T) and G (P, T) are known as 

thermodynamic potential functions. When the characteristic function is minimum 

the system will be in stable equilibrium. The thermodynamic potential is defined 

as the function which is minimized subject to all the constraints that are imposed 

on the system. 

The relations among the above functions can be represented with the help of 

mathematical aids. If a relation exists among three variables x, y and z, then if we 

express z as a function of x and y; then 

                            𝑑𝑧 = (
𝜕𝑧

𝜕𝑥
)y𝑑𝑥 + (

𝜕𝑧

𝜕𝑦
 )𝑥 𝑑𝑦 . 
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 Let     M = (
𝜕𝑧

𝜕𝑥
) and N= ( 

𝜕𝑧

𝜕𝑦
 )𝑥  

Then dz= Mdx + Ndy, 

where z, M and N are all functions of x and y.  

Partially differentiating M with respect to y and N with respect to x,  

we get                    (
𝜕𝑀

𝜕𝑦
)x= 

𝜕2𝑧

𝜕𝑥𝜕𝑦
   

and                         (
𝜕𝑁

𝜕𝑥
)y= 

𝜕2𝑧

𝜕𝑦𝜕𝑥
 

Since the  second derivatives of right hand terms are equal it follows that   

                              (
𝜕𝑀

𝜕𝑦
)x= (

𝜕𝑁

𝜕𝑥
)y   

This is known as the condition for exact differentials and it applies to all for 

thermodynamic potentials.  

Applying the above result to the our exact differentials; dU, dH ,dA,dG  

We obtain; 

dU = TdS – PdV    ;     hence (
𝜕𝑇

𝜕𝑉
)S= =-(

𝜕𝑃

𝜕𝑆
)V 

dH = V dP+ TdS    ;     hence(
𝜕𝑇

𝜕𝑃
)S= (

𝜕𝑉

𝜕𝑆
)P 

dA = - SdT – PdV  ;     hence (
𝜕𝑆

𝜕𝑉
)T= (

𝜕𝑃

𝜕𝑇
)V   

dG = VdP – SdT   ;      hence (
𝜕𝑆

𝜕𝑃
)T= −(

𝜕𝑉

𝜕𝑇
)P   

The four equations on the right are known as Maxwell’s relations. These 

equations expresses relations which hold at any equilibrium state of a hydrostatic 

system. These equations can be used to find equivalent terms related to entropy 
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and  can provide relationships between measurable quantities and those which 

either cannot be measured or difficult to measure. 

 

1.4.3 Phase Transitions  

The phase is defined as a state of matter that is uniform throughout, not only in 

chemical composition but also in physical state. A phase transition is a change in 

state in rom one phase to another. It occurs when there is an abrupt change in one 

or more properties of the system. The electrical resistivity of a material goes from 

zero to a finite value in a superconducting to normal phase transition. In a 

ferromagnetic phase transition the magnetic properties of a system change 

abruptly from those of a paramagnet to those of a ferromagnet. An abrupt change 

in properties is one sign of a phase transition. Another sign of a phase transition 

is the appearance of two phases coexisting side by side. 

The phases having higher thermodynamic potential will be unstable and will 

eventually decays into the stable one. In order to simplify the notation, we 

describe all thermodynamic potentials as a simple mathematical function, Φ(ø), 

where ø is the quantity which can vary. Thus, Φ(ø), could be the generalized 

Gibbs free energy as a function of volume, so that ø = V; or Φ(ø) could represent 

the magnetic free energy, F with ø the magnetization. 

The thermodynamic potential is analogous to the potential energy, V(x), of a 

particle in a one-dimensional well . Just like the particle lowers its energy by 

sitting at the bottom of the potential well; the thermodynamic system lowers its 

free energy by sitting at the bottom of the thermodynamic potential. If Φ(ø), has 

two minima the more stable state is the one with the lower energy. The other 

minimum is unstable and will eventually decay into the lower minimum. We say 

that the system is metastable. 
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One minimum could correspond to the liquid phase of matter, the other minimum 

to the gas phase. Suppose the two minima evolve as the temperature (or pressure) 

increases so that one minimum is lower over one range of temperatures, the other 

is stable over another range. When the system evolves from one stable minimum 

to the other the phase changes, say from liquid to gas 

Phase transitions are of two types: First order Phase Transitions are 

discontinuous. They involve a latent heat. Discontinuous phase transitions are 

characterized by a discontinuous change in entropy at a fixed temperature. 

Examples are solid-liquid and liquid-gas transitions at temperatures below the 

critical temperature. Second order phase transitions are continuous transitions 

which involve a continuous change in entropy which means there is no latent heat. 

n. If all the first derivatives of the thermodynamic potential are continuous at the 

transition, we call it a continuous transition.  

The entropy is continuous at a continuous transition. Examples are liquid-gas 

transitions at temperature above the critical temperature. Bose condensation and 

paramagnetic to ferromagnetic phase transitions are also examples of a second 

order phase transition 

Common examples of phase transitions are the ice melting and the water boiling, 

or the transformation of graphite into diamond at high pressures. The first order 

phase transitions are accompanied by abrupt changes in the specific volume and 

entropy. A first-order phase transition is determined by the relations: 

                                  T1 = T2 and P1 = P2 

                                 G1(P, T) = G2(P, T)  

 where T, P, G are the temperature, pressure, and the Gibbs thermodynamic 

potential, respectively. Using the above relation, we can derive the Clausius–

Clapeyron equation, which defines the slope of the phase equilibrium curves:  
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𝑑𝑃

𝑑𝑇
=

∆𝑆

∆𝑉
 

where ΔS and ΔV are the volume and entropy changes at the phase transition. 

The second-order phase transitions include transitions associated with an 

emergence of magnetism, superconductivity, superfluidity, orientational order, 

etc. Ehrenfest proposed equations relating the slope of the phase transition curve 

to discontinuities in the heat capacity, compressibility, and thermal expansion 

coefficient. 

 

1.5 BLACK HOLE  

 

A black hole is a region of spacetime where gravity is so strong that no particles 

or even electromagnetic radiation such as light can escape from it. The story of 

the black hole begins with Schwarzschild’s discovery of the Schwarzschild 

solution in 1916, soon after Einstein’s foundation of the general theory of 

relativity. 

The Schwarzchild radius is the boundary of the black hole which is determined 

by Karl Schwarzchild and it completely depends on the mass of Black hole. If 

escape velocity is greater than velocity c the light cannot escape and we have a 

black hole .Any object with a physical radius smaller than Schwarzchild radius 

will be a Black hole. Anything that crosses the event horizon needs to be 

travelling at speed greater than velocity of light 𝑐 .We see a black sphere 

reflecting nothing. So it is the event horizon which is the Black part.‘Hole’ part 

in black hole comes from the Singularity.  

When a massive star has exhausted the internal thermonuclear fuels in its core at 

the end of its life, the core becomes unstable and gravitationally collapses inward 

upon itself, and the star’s outer layers are blown away. The crushing weight of 
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constituent matter falling in from all sides compresses the dying star to a point of 

zero volume and infinite density called the singularity. This singularity is covered 

by Event Horizon. Radius of the sphere representing the event horizon is called 

the Schwarzschild radius, 𝑅𝑠 =
2𝐺𝑀

𝑐2
 

 

1.5.1 No hair theorem  

According to no-hair theorem only three parameters are required to define the 

most general black hole. They are mass M, charge Q and angular momentum J. 

Black holes have no hair whereas Star has many hairs (or parameters) 

1.5.2 Classes of Black hole  

Based on no-hair theorem the black holes can be characterized into three, 

a. Static black holes with no charge, described by Schwarzschild solution.  

b. Black holes with electrical charge described by Reissner Nordstrӧm                                          

solutions 

c. Rotating black holes described by Kerr solutions 

 

  

Karl Schwarzschild in 1916 gives the First solution of Einstein’s equations of 

General Relativity. He describes gravitational field in empty space around a 

nonrotating mass space-time interval in Schwarzschild’s solution Schwarzschild 

metric is a spherically symmetric black hole. It is the simplest kind parametrized 

by a single parameter mass, M. Its line element is defined as 

 𝑑𝑠2 = − (1 −
2𝑀

𝑟
 )𝑑𝑡2 + (1 −

2𝑀

𝑟
 )

−1
 𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃 𝑑∅2)  
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It exhibits a singularity at the Schwarzschild radius r= 2M. This is the surface 

below which one can no longer escape from the black hole. 

  

 The Reissner-Nordström geometry describes the geometry of empty  space 

surrounding a charged black hole. The German aeronautical engineer Reissner 

and the Finnish physicist Nordstrӧm independently solved the Einstein- Maxwell 

field equations for charged spherically symmetric systems, in 1916 and 1918, 

respectively since most stars, and thus most black holes formed from the collapse 

of stars, have angular momentum, it is desirable to generalize the spherical, non-

rotating Schwarzschild solution to that of rotating source. So, the difference from 

Schwarzschild metric is that this has an additional Coulomb field. The line 

element for Reissner- Nordstrӧm black holes is given by 

𝑑𝑠2 = − (1 −
2𝑀

𝑟
 +

𝑄2

𝑟2
) 𝑑𝑡2 + (1 − 

2𝑀

𝑟
 +

𝑄2

𝑟2
) −1 𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2𝜃 𝑑∅2 ) 

As the charged black holes in a realistic environment will quickly attract opposite 

charges from the surroundings and get neutralized, this solution is not of 

astrophysical interest. 

 

  

Both the Schwarzschild and Reissner- Nordstrӧm black holes are spinless. The 

solution for a rotating black hole was put forward by Kerr in 1963 with an 

additional 37 parameter, the angular momentum, J. The line element for black 

hole having mass and angular momentum is given by, 

𝑑𝑠2 = 
∆

𝜌2
 (𝑑𝑇 − ℎ 𝑠𝑖𝑛2𝜃 𝑑𝜙)2 − 

𝜌2

∆
 𝑑𝑅2 − 𝜌2𝑑02 − 

 𝑠𝑖𝑛2𝜃

𝜌2
 [(𝑅2 + ℎ2 ) 𝑑𝜙 − ℎ 𝑑𝑇]2  
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where h ≡ 
𝐽

𝑀
= angular momentum per unit mass, 

 𝛥 = 𝑅2 − 2𝐺𝑀𝑅 + ℎ2   

 𝜌2 = 𝑅2 + ℎ2 𝑐𝑜𝑠2𝜃. 

As charged black holes are not considered physically, astrophysical black holes 

are mainly Kerr. 

 

  

The Kerr–Newman metric is an asymptotically flat, stationary solution of 

the Einstein–Maxwell equations in general relativity. It describes the spacetime 

geometry in the region surrounding an electrically charged, rotating mass. It 

generalizes the Kerr metric by taking into account the field energy of 

an electromagnetic field, in addition to describing rotation 

Such solutions do not include any electric charges other than that associated with 

the gravitational field, and are thus termed as vacuum solutions[1]. Newman 

combined the RN solution with Kerr solution and generated the spacetime 

geometry for a charged spinning mass. The metric equation for charged rotating 

black holes is as same as equation but with 𝛥 defined as 

            𝛥 = 𝑅2 − 2𝐺𝑀𝑅 + ℎ2 + 𝐺𝑄2 

 

 

 

 

https://en.wikipedia.org/wiki/Asymptotically_flat
https://en.wikipedia.org/wiki/Stationary_spacetime
https://en.wikipedia.org/wiki/Einstein%27s_field_equation#Einstein%E2%80%93Maxwell_equations
https://en.wikipedia.org/wiki/General_relativity
https://en.wikipedia.org/wiki/Kerr_metric
https://en.wikipedia.org/wiki/Electromagnetic_field
https://en.wikipedia.org/wiki/Vacuum_solution
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Chapter 2 

BLACKHOLE THERMODYNAMICS 

 

2.1 INTRODUCTION  

Bekenstein and Hawking showed that the black holes have an entropy which is 

proportional to the area of the black hole. This was analogous to the second law 

of thermodynamics. 

The entropy of black hole is given by, 

           𝑆 =
𝑘𝐶3𝐴

4𝐺ℏ 
    Bekenstein–Hawking formula 

Where A is the area of the event horizon, 𝐿𝑃 is the Planck length, G is the 

Newton’s gravity constant, ℏ is the reduced Planck’s constant. 

This laid a milestone in the study of black holes. In later years the four complete 

laws of black hole thermodynamics were introduced. These laws have a strong 

resemblance with the laws of thermodynamics. Thus, it became clear that the 

black holes do indeed behave as thermodynamic system. The crucial step in this 

realization was Hawking’s remarkable discovery of 1974 that quantum processes 

allow a black hole to emit thermal flux particles. 

2.2 LAWS OF BLACKHOLE THERMODYNAMICS 

 

By the zeroth law of black hole mechanics, the surface gravity of a stationary 

black hole must be constant over the event horizon of the black hole. This is 

analogous to the zeroth law of thermodynamics which states that the temperature 
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is unform throughout a system in thermal equilibrium. Here the surface gravity 𝜅 

playing the role of temperature. The black holes have a well-defined temperature, 

which is as a matter of fact proportional to the surface gravity:  

                                    𝑇 = 
 ℏ

2𝜋
 𝜅 

 

First law for a stationary black hole gives relation between change in mass M, 

angular momentum J and area A,  

                    𝑑𝑀 = 
𝑘𝑑𝐴

8𝜋𝐺
 + Ω𝑑𝐽 

where Ω is the angular velocity of the event horizon.  

For a rotating charged black hole, the First law takes the form, 

                   𝑑𝑀 = 
𝑘𝑑𝐴

8𝜋𝐺
 + Ω𝑑𝐽 

This is analogous to the first law of ordinary thermodynamics. 

 According to first law of thermodynamics all the thermodynamic processes are 

subjected to the principle of conservation of energy. The first law states that the 

change in internal energy is equal to the difference of change in heat transfer and 

work done by the system 

                  𝛿𝐸 =  𝑇𝛿𝑆 +  𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒.  

 We see that the analogous quantities are, E ↔ M, T ↔ ακ, and S ↔ A/8πα, where 

α is a constant. 

 

The Area theorem of general relativity states that the area of a black hole can 

never decreases in any process i.e., 
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                                             ∆A ≥ 0.  

 Bekenstein observed that this is analogous to the second law of thermodynamics. 

By second law the total entropy of a closed system can never decrease through 

any process. This law requires black hole to have entropy. If it carried no entropy, 

falling of mass into a black hole would violate the second law. But this law is not 

informative in its original form. For example, if an ordinary system falls into a 

black hole, the ordinary entropy becomes invisible to an exterior observer, so 

from the observer’s point of view, the concept of saying increase in ordinary 

entropy doesn’t provide any insight. Thus, the ordinary second law is 

transcended. 

 Including the black hole entropy, gives a more useful law, the generalized second 

law of thermodynamics the sum of ordinary entropy outside black holes and the 

total black hole entropy never decreases and typically increases as a consequence 

of generic transformations of the black hole. When matter entropy flows into a 

black hole, the law requires an increase in black hole entropy more than 

compensate of ordinary entropy from sight. During the process of Hawking 

radiation, the black hole's area decreases, in violation of the area theorem. The 

generalized second law predicts that the emergent Hawking radiation entropy 

shall more than compensate for the drop in black hole entropy. 

 

 

We have already seen the statement of third law in ordinary thermodynamics. 

They are:  

• The entropy of a system at absolute zero temperature either vanishes or becomes 

independent of the intensive thermodynamic parameters.  
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• To bring a system to absolute zero temperature involves an infinite number of 

processes or steps.  

The third law of black hole mechanics states that it is not possible to form a black 

hole with vanishing surface gravity. That is, ĸ= 0 cannot be achieved. A black 

hole with T=0 has, ĸ = 0. This corresponds to an extreme Kerr black hole with J 

= 𝑀2 
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Chapter 3 

ANTI DE SITTER SPACE 

The most ideal black holes are those which extend to asymptotically flat empty 

space. But they are of little relevance. The asymptotically flat black holes cannot 

reach thermodynamic stability, due to the inevitable so-called Hawking radiation. 

In order to obtain a better understanding of the thermodynamic properties and 

phase transition of black holes, we must ensure that the black hole can achieve 

stability in the sense of thermodynamics . During the formulations of General 

Theory, the universe was assumed to be static. The cosmological constant was 

introduced by Einstein in 1917 to allow for the possibility of a static universe but 

was dismissed as a mistake after the expansion of the universe was discovered . 

Einstein considered it to be his “greatest mistake,” but it has turned out to be a 

required ingredient of modern cosmology since 1998 . The physical effect this 

constant is to impose, on a large scale, a small repulsive force . This force, if 

adjusted in just the right way, can be made to compensate precisely for the 

average gravitational attraction between the galaxies . Weinberg showed as in 

order to permit our existence as observers the value of cosmological constant 

must be very small and positive. 

The black holes with zero cosmological constant describe homogenous and 

isotropic universe and are called flat-Minkowski space. We can also have 

solutions to Einstein equations with non-zero cosmological constants. If Λ > 0 

the solutions tend asymptotically to de Sitter space and if Λ < 0 the solution would 

tend to Anti-de Sitter space. The Einstein equation with cosmological constant 

can be written in the form 

𝑅𝑎𝑏 − 𝛬gab =
8𝜋𝐺

𝐶4
(Tab-

1

2
gabR) 
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Just like the black holes in a flat space, the one in de Sitter and Anti de Sitter do 

exhibits properties including temperature, entropy and free energy. It was found 

that a black hole in de Sitter space would emit particles with temperature 

determined by the surface gravity of the black hole horizon  

Anti-de Sitter space has been regarded as of little physical interest. The major 

reason for it is because of the negative value of Λ. It when interpreted as a 

negative energy density, there would be a negative energy density corresponding 

to it.. AdS space has no natural temperature associated with it just like the flat 

space. The main interest for these spaces has come from string theory and M-

Theory, but also cosmological models with extra dimensions use properties of the 

anti-de Sitter spacetimes . A black hole in anti-de Sitter space has a minimum 

temperature which occurs when its size is of the order of the characteristic radius 

of the anti-de Sitter space .  

If we take the asymptotically flat black hole as a thermodynamic system, it does 

not meet the requirements to achieve thermodynamic stability due to its negative 

heat capacity. Comparing with the asymptotically flat black holes, AdS black 

holes can be in thermodynamic equilibrium and stable state, because the heat 

capacity of the system is positive when the system parameters take certain values. 

Recently, increasing attention has been paid to the possibility that the 

cosmological constant Λ could be an independent thermodynamic parameter 

(pressure), and the first law of thermodynamics of AdS black hole may also be 

established with 𝑃-𝑉 terms In anti-de Sitter space the gravitational potential 

relative to any origin increases at large spatial distances from the origin. This 

means that the locally measured temperature of a thermal state decreases and that 

the total energy of the thermal radiation is finite [3]. 

 The metric of anti-de Sitter space in static form is given by 
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𝑑𝑠2 = −(𝑟) 𝑑𝑡2 + 𝑓(𝑟) −1 𝑑𝑟 2 + 𝑟 2 (𝑑𝜃 2 + sin2 𝜃 𝑑∅ 2 ) 

where 𝑓(𝑟) = 1 + 
𝑟2

𝑙2
 

where L is the AdS length scale and is related to the cosmological constant as  

𝐿 2 = 
−3

𝛬
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Chapter: 4 

TAUB-NUT SPACE 

4.1 INTRODUCTION 

The Taub–NUT metric is an exact solution to Einstein's equations. It may be 

considered a first attempt in finding the metric of a spinning black hole. Taub–

NUT solution  was first discovered by Taub (1951), but expressed in a coordinate 

system which only covers the time-dependent part of what is now considered as 

the complete space-time.  

It was initially constructed on the assumption of the existence of a four-

dimensional group of isometries so that it could be interpreted as a possible 

vacuum homogeneous cosmological model.This solution was subsequently 

rediscovered by Newman, Tamburino and Unti (1963) whose initials constitute 

the “NUT” of the TN spacetimes. 

 They rediscovered it as a simple generalisation of the Schwarzschild space-

time.Although they presented it with an emphasis on the exterior stationary 

region, they expressed it in terms of coordinates which cover both stationary and 

time-dependent regions. 

In addition to a Schwarzschild-like parameter m which is interpreted as the mass 

of the source, it contained two additional parameters – a continuous parameter l 

which is now known as the NUT parameter, and the discrete 2-space curvature 

parameter which is denoted here by ∈.In 1963, when Roy Kerr introduced the 

Kerr metric for rotating BHs, he came up with a 4-parameter solution, one of 

which was the mass of the central body and the other was its angular momentum.  

The NUT-parameter or the so-called NUT charge  was one of the two remaining 

parameters, which was eliminated from his solution because Kerr believed that it 
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was nonphysical since it made the metric non-asymptotically flat. However, 3 

other researchers interpret it either as a gravomagnetic monopole parameter of 

the central mass or a twisting property of the surrounding spacetime.  

It is only the case in which ∈  = +1, which includes the Schwarzschild solution, 

that was obtained by Taub. The cases with other values of ∈  are generalisations 

of the other A-metrics. We will follow the usual convention of referring to the 

case in which ∈  = +1 as the Taub–NUT solution.  

Two different interpretations: Both of these have unsatisfactory aspects in terms 

of their global physical properties. In one interpretation, the space-time contains 

a semi-infinite line singularity, part of which is surrounded by a region that 

contains closed timelike curves. The other interpretation, which is due to Misner 

(1963), contains no singularities. These are removed only at the expense of 

introducing a periodic time coordinate throughout the stationary region. 

However, this also has other undesirable features, such that Misner was led to 

conclude that the complete space-time has no reasonable physical interpretation 

 

 

In recent years, it has become common to refer to the NUT parameter l as the 

magnetic mass or the gravitomagnetic monopole moment. This interpretation is 

based on an analogue of one aspect of a property of one of the possible 

interpretations, but is not relevant in the context of the alternative global 

interpretation of the space-time. 

In Misner’s interpretation, the Taub–NUT solution has a number of properties 

that are usually considered to be undesirable in any reasonable representation of 

a spacetime. This is so much the case that Misner (1967) has presented it as   “a 

counter-example to almost anything” 
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Chapter 5 

THERMODYNAMICS OF REISSNER 

NORDSTROM ANTI DE SITTER BLACK HOLE 

 

The RN-AdS black hole gives a spherically symmetric, stationery black hole. 

It line element is determined by two parameters: charge Q and mass M.  

It also contains a negative cosmological constant. 

 The metric equation for RN-anti de Sitter black hole is given by  

   𝑑𝑠2 = 𝑔ⅈ𝑘𝑑𝑥i𝑑𝑥𝑘                    -------------------1.1        

               = −(𝑟)𝑑𝑡2 + 
1

𝑓(𝑟)
 𝑑𝑟2 + 𝑟2 𝑑𝛺2   -----------------------1.2 

  where, f(r) = 1-
2𝑀

𝑟
+

𝑟2

𝐿2
 +

𝑄2

𝑟2
  -----------1.3  

𝑑𝛺2 represents the line element of unit-2 sphere, or 

                                   𝑑𝛺2 = 𝑑𝜃2 + sin2𝜃𝑑∅2 ---------------1.4 

and L is the AdS length scale and is related to the cosmological constant as  

                             ᴧ =- 
3

𝐿2
    ----------------1.5 

This black hole solution has two event horizons and one cosmological horizon . 

The vacuum pressure of the AdS spacetime depends on the cosmological constant 

and is given by  

            𝑃 = −
𝛬  

8𝜋
= 

3

8𝜋𝐿2
        -----------------1.6 

f(r) satisfies the relation f(r) =0, with r, the event horizon 

Solving for M, 
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M=
𝑟

2
+

𝑄2

2𝑟
+

𝑟3

𝐿2
  ---------------1.7 

We have the relation between r and S 

S = π𝑟2         ------------------1.8 

Replacing r in terms of S gives 

M=
1

2
√

𝑆

𝜋
 + 

𝑄2

2
√

𝜋

𝑆
 + (

𝑆

𝜋
)3/2 1

2𝐿2
   ----------------1.9 

 

 

Figure 1.  Variation of mass with entropy with charge Q unity and length scale L = 0.5, L = 

1.0, L = 1.5 

  

Thermodynamic Potential of a charge black hole is given by,    

 Ø  =
𝜕𝑀

𝜕𝑄
   

       =√
𝜋

𝑆
Q         -----------------------1.10 

The temperature of the black hole is given by, 
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T=
𝜕𝑀

𝜕𝑆
 

=
𝜕

𝜕𝑆
(

1

2
√

𝑆

𝜋
 + 

𝑄2

2
√

𝜋

𝑆
 + (

𝑆

𝜋
)3/2 1

2𝐿2
) 

 

𝑻 =
𝟏

𝟒√𝝅𝑺
  − 

𝑸𝟐√𝝅

𝟒𝟑 √𝑺
+ 

𝟑√𝑺

𝟒𝑳𝟐 𝟑√𝝅
 -----------------1.11 

 

Figure 2 The variation of temperature with S, with L=0.5, L=1, L=1.5 and Q= 1  

 

The Heat capacity is given by 

C=T
𝜕𝑆

𝜕𝑇
   

  =T(
𝜕𝑇

𝜕𝑆
) -1 

𝜕𝑇

𝜕𝑆
 =−

1

4√𝜋 2𝑆3/2
 +

𝑄2√𝞹

4

3

2
𝑆−5/2 +

3

4 2√𝑆 𝜋3/2𝐿2
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    =
1

  8𝐿2𝜋3/2𝑆5/2   
  (-L2𝜋S+ L2Q23𝜋 5/2 +3S2) 

C= (
1

4√𝜋𝑆
  − 

𝑄2√𝜋

43 √𝑆
+ 

3

4𝐿2 3√𝜋
√𝑆)(

  8𝐿2𝜋3/2𝑆5/2

−𝐿2𝜋𝑆+𝐿2𝑄23𝜋
5
2

 
+3𝑆2

) 

 C =
𝟔𝑺𝟑−𝟐𝑺𝑸𝟐𝑳𝟐𝝅𝟐+𝟐𝑳𝟐𝝅𝑺𝟐

𝟑𝑺𝟐−𝑳𝟐𝝅𝑺+𝟑𝑳𝟐𝑸𝟐𝝅𝟓/𝟐
    ------------------1.12 

Figure 3. Variation of heat capacity with entropy. The charge of the black hole is assumed to 

be unity and the length scale is varied as L= 0.5, L= 1.0 and L= 1.5 

 

The free energy of the black hole given by,  

F = M – TS 

= (
1

2
√

𝑆

𝜋
 + 

𝑄2

2
√

𝜋

𝑆
 + (

𝑆

𝜋
)3/2 1

2𝐿2
 )  - S(

1

4√𝜋𝑆
  − 

𝑄2√𝜋

4  3√𝑆
+ 

3√𝑆

4𝐿2 3√𝜋
) 

=
1

2
√

𝑆

𝜋
 + 

𝑄2

2
√

𝜋

𝑆
 + (

𝑆

𝜋
)3/2 1

2𝐿2
 - 

1

4
√

𝑆

𝜋
+ 

𝑄2

4
√

𝜋

𝑆
- 

3

4𝐿2
∛

𝑆

𝜋
 

F=
𝟏

𝟒
√

𝑺

𝝅
 – 

𝟏

𝟒𝑳𝟐
(

𝑺

𝝅
)3/2 + 

𝟑𝑸𝟐

𝟒
√

𝝅

𝑺
     ---------------------1.13 
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Figure 4. Variation of free energy for three different values of L. Q is chosen to be unity. 
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Chapter 6 

THERMODYNAMICS OF BARDEEN 

BLACKHOLE 

 

Bardeen’s solution of Einstein’s equation in the presence of nonlinear 

electromagnetic field is parametrized by mass M and charge q. The static and 

spherically symmetric line element is given by  

 𝒅𝒔𝟐 = 𝒇(𝒓)𝒅𝒕𝟐 −
𝒅𝒓𝟐

𝒇(𝒓)
− 𝒓𝟐(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅𝝋𝟐)                             (2.1) 

where, 

   f(r) = 1 −  
2Mr2

(r2+q2)
3
2

                                                    (2.2) 

Using the area law, (𝑆 = 4𝜋𝑟2), we can write the mass in terms of the entropy S 

and the q as: 

    𝐌 =
(𝐒+𝛑𝐪𝟐)

𝟑
𝟐

𝟐√𝛑𝐒
                                                    (2.3) 

Temperature of the black hole is given by the relation, T = 
∂M 

∂S 
 as, 

  T = 
∂

∂S 
[

(S+πq2)
3
2

2√πS
] 

     = 
3(S+πq2)

1
2

4√πS
−  

(S+πq2)
3
2

2√πS
 

     = 
(S+πq2)

1
2

4√πS2
(3S − 2(S + πq2) 

                T   = 
(𝐒−𝟐𝛑𝐪𝟐)   √𝐒+𝛑𝐪𝟐

𝟒√𝛑𝐒𝟐
                                                  (2.4)                                                
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Figure 1. Variation of temperature with respect to entropy S of Bardeen black hole. 

 

We will now calculate the heat capacity, C = 𝑇
∂S

∂T  
, of the black hole and is given 

by 

 C = 𝑇 [
∂T

∂S 
]

−1
  = 𝑇

∂

∂S 
[

(𝑆−2𝜋𝑞2)   √𝑆+𝜋𝑞2

4√𝜋𝑠2
]

−1

 

    = T 
8√πS3

[S(S+πq2)−
1
2(S−2πq2)−√S+πq2(2S−8πq2)]

 

             = 
2S (S−2πq2)   √S+πq2

[S(S+πq2)−
1
2(S−2πq2)−√S+πq2(2S−8πq2)]

 

 

Dividing numerator and denominator with√(𝑆 + 𝜋𝑞2)  

C = 
−𝟐𝐒 (𝟐𝛑𝐪𝟐−𝐒) (𝐒+𝛑𝐪𝟐)

𝟖𝛑𝟐𝐪𝟒+ 𝟒𝛑𝐪𝟐𝐒−𝐒𝟐
 

 

(2.5) 
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Figure 2. Variation of heat capacity with respect to entropy S of Bardeen black hole. 

Then the Gibb’s free energy, 𝐹 = 𝑀 − 𝑇𝑆, is given by    

 

𝑭 =
(𝑺 + 𝝅𝒒𝟐)

𝟑
𝟐

𝟐√𝝅𝑺
−

(𝑺 − 𝟐𝝅𝒒𝟐)   √𝑺 + 𝝅𝒒𝟐

𝟒√𝝅𝑺
                                    (2.6) 

Now we study whether this black hole will undergo a second order phase 

transition or not. This can be done in two ways.  

The first method is by studying the variation of the heat capacity with entropy 

and we can see a discontinuity in heat capacity (Fig3) for a particular value of 

entropy( S = 4.1, q = 0.5). And we also note that heat capacity possesses a positive 

phase below this value of S and a negative phase above this value of S. The 

second method is by studying the variation of free energy(F) with temperature(T).  

A second order phase transition is obvious for two reasons. First, of course the 

heat capacity shows an infinite discontinuity (at S = 4.1, where q = 0.5) and 

possesses both positive and negative phases. The positive phase exists for small 

values of S and the black hole is stable only in this region. The same result can 

also be seen from the parametric plot between the free energy and the temperature 
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(Fig4) which shows a cusp type double point (at T = 0.046, where S = 4.1 and q 

= 0.5). The F-T variation shows that there are two branches of the curve, for one 

of the branches, the free energy decreases with the increase of Hawking 

temperature to the minimum limit, while for the other branch F increases rapidly 

with T. This behavior also signals a second order phase transition. (The numerical 

values are obtained from the corresponding graphs.) 
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Chapter 7 

THERMODYNAMICS OF TAUB-NUT CHARGED 

BLACKHOLE 

 

     Introduction 

Taub-NUT black hole solution depends on three parameters: Mass M, NUT 

parameter l, 

𝑑𝑠2 = −𝑓(𝑟)(𝑑𝑡 − 2𝑙𝑐𝑜𝑠𝜃𝑑𝜑)2 +
𝑑𝑟2

𝑓(𝑟)
+ (𝑟2 + 𝑙2)(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2) 

     where 𝒇(𝒓) =
𝒓𝟐−𝟐𝒎𝒓−𝒍𝟐

𝒓𝟐+𝒍𝟐
 

When 𝑙 =  0 and 𝑚 ≠ 0, the metric reduces to the Schwarzschild solution     

in which m is the familiar parameter representing the mass of the source. 

Newman, Tamburino and Unti (1963) have shown that, when l is small, the 

inclusion of this parameter induces a small additional advance in the 

perihelion of approximately elliptic orbits in the stationary region of the space-

time. However, when l ≠ 0, the space-time has very different global properties 

to that of Schwarzschild. 

 

TAUB NUT CHARGED BLACK HOLE

   Charged TNBH solution depends on three parameters: Mass M, NUT parameter        

l, and charge q and the metric of CTNBH describes the vacuum spacetime around 

a source 
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𝒅𝒔𝟐 = 𝒇(𝒓)(𝒅𝒕 − 𝟐𝒍𝒄𝒐𝒔𝜽𝒅𝝋)𝟐 −
𝒅𝒓𝟐

𝒇(𝒓)
− (𝒓𝟐 + 𝒍𝟐)(𝒅𝜽𝟐 + 𝒔𝒊𝒏𝟐𝜽𝒅𝝋𝟐) 

  

   where 𝒇(𝒓) = 𝟏 −
𝟐(𝑴𝒓+𝒍𝟐)+𝒒𝟐

𝒓𝟐+𝒍𝟐
 

 𝒇(𝒓) satisfies  the relation 𝒇(𝒓) = 𝟎, 

Solving for M; using the relation between r and S as S=π𝑟2and replacing r in 

terms of entropy S gives, 

                  𝑴 =
𝟏

𝟐
√

𝒔

𝝅
−

𝒒𝟐

𝟐
√

𝝅

𝒔
 - 

𝒍𝟐

𝟐
√

𝝅

𝒔
 

Figure 1.Variation of mass with respect to entropy for length L=0,L=0.5,L=1 with charge 

Q=1. 

 

The temperature of the blackhole is given by 

T=
∂M

∂S
 =  

∂

∂S
(

𝟏

𝟐
√

𝐬

𝛑
−

𝐪𝟐

𝟐
√

𝛑

𝐬
 −  

𝐥𝟐

𝟐
√

𝛑

𝐬
) 

T =
1

4√πs
+

q2√π

4s
3
2

+
√πl2

4s
3
2
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T =
πl2+s+πq2

4√π s
3
2

     

𝐓 =
𝟏

𝟒√𝛑𝐬 
+

𝐪𝟐√𝛑+√𝛑𝐥𝟐

𝟒𝐬
𝟑
𝟐

   

 

Figure 2. Variation of temperature with respect to entropy for length L=0,L=0.5,L=1 with 

charge Q=1 

 

Heat capacity is given by, 

𝐶 = 𝑇
𝜕𝑆

𝜕𝑇
   

C= 𝑇 [
∂T

∂S 
]

−1
  

𝜕𝑇

𝜕𝑆
=

−3𝑞2𝜋−3𝑙2𝜋−𝑠

8√𝜋𝑠
5
2

     

𝐶 = (
𝟏

𝟒√𝝅𝒔
+

𝒒𝟐√𝝅

𝟒𝒔
𝟑
𝟐

+
√𝝅𝒍𝟐

𝟒𝒔
𝟑
𝟐

) (
 8√𝜋𝑠

5
2

−3𝑞2𝜋 − 3𝑙2𝜋 − 𝑠
) 
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𝑪 = (
 𝑺(𝒒𝟐𝝅+𝒍𝟐𝝅+√𝑺)

−𝟑𝒒𝟐𝝅−𝟑𝒍𝟐𝝅−𝑺
) 

Figure 3. Variation of heat capacity with respect to entropy for length L=0,L=1,L=2 with 

charge Q=1 

 

Free energy of a blackhole is given by 

𝐹 = 𝑀 − 𝑇𝑆 

𝐹 = (
𝟏

𝟐
√

𝒔

𝝅
−

𝒒𝟐

𝟐
√

𝝅

𝒔
 −  

𝒍𝟐

𝟐
√

𝝅

𝒔
) − 𝑆 (

𝟏

𝟒√𝝅𝒔
+

𝒒𝟐√𝝅

𝟒𝒔
𝟑
𝟐

+
√𝝅𝒍𝟐

𝟒𝒔
𝟑
𝟐

) 

𝐹 = (
𝟏

𝟒
√

𝒔

𝝅
−

𝒒𝟐

𝟒
√

𝝅

𝒔
 −  

𝒍𝟐

𝟒
√

𝝅

𝒔
) 
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Figure 4. Variation of free energy with entropy with length scale L=1 and L=0.5 with charge 

Q=1 
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CONCLUSION 

 

In this project we studied  RN-AdS black hole, Bardeen black hole and Taub NUT 

black hole. We have derived the thermodynamic quantities, and plotted their 

variations with respect to entropy. 

 In RN-AdS black hole, below a certain value of entropy the mass increases with 

decrease in entropy and the mass and gives an infinite discontinuity at zero 

entropy. At very low values of entropy the temperature of the black hole shows 

an abnormal behaviour. For RN-AdS black hole the heat capacity is negative 

lower values of entropy and reaches zero at a certain value. The free energy of 

the black holes falls to negative above a certain value.  

In Bardeen black hole, from the temperature entropy diagram we have eliminated 

the possibility of a first order phase transition. A second order phase transition is 

obvious, since the heat capacity shows an infinite discontinuity and possesses 

both positive and negative phases. The positive phase exists for small values of S 

and the black hole is stable only in this region. 

For Taub-NUT black hole, there is a smooth variation of mass with entropy. The 

black hole shows finite temperature for all values of entropy. For Taub-NUT, heat 

capacity is negative and it indicates that the black hole is unstable and the free 

energy falls to negative above a certain value. 
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