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Chapter 1

Introduction and History

1.1 History

The history of numerical weather prediction considers how current
weather conditions as input into mathematical models of the atmo-
sphere and oceans to predict the weather and future sea state has dif-
ferent over the years. The roots of numerical weather prediction can be
traced back to the work of Vilhelm Bjerknes, a Norwegian physicist who
has been called the father of modern meteorology. In 1904, he published
a paper suggesting that it would be possible to forecast the weather by
solving a system of nonlinear partial differential equations. A British
mathematician named Lewis Fry Richardson spent three years devel-
oping Bjerknes’s techniques and procedures to solve these equations.
In 1920s, it was not until the advent of the computer and computer
simulation that computation time was reduced to less than the forecast
period itself. ENTAC was used to create the first forecasts via computer
in 1950, and over the years more powerful computers have been used
to increase the size of original datasets as well as include more difficult
versions of the equations of motion. The development of global forecast-
ing models led to the first climate models. The development of limited
area models facilitated developments in forecasting the tracks of trop-
ical cyclone as well as air quality in the 1970s and 1980s. Because the
output of forecast models based on atmospheric dynamics needs correc-

tions near ground level, model output statistics [M OS] were developed



in 1970s and 1980s for individual forecast points. The MOS apply sta-
tistical techniques to post-process the output of dynamical models with
the most recent surface observations and the forecast points climatol-
ogy. This technique can correct for model resolution as well as model
biases. Even with the increasing power of supercomputers, the forecast
skill of numerical weather models only extends to about two weeks into
the future. Since the density and quality of observations together with
the chaotic nature of the partial differential equations used to calculate
the forecast introduce errors which double every five days. The use of
model ensemble forecasts since the 1990s helps to define the forecast
uncertainty and extend weather forecasting farther into the future than

otherwise possible.

1.2 Introduction

Weather forecasting can be defined as the act of predicting future
weather conditions or an effort to indicate the weather conditions which
are expected to occur. Weather forecasting is the application of Sci-
ence and Technology to predict the state of the atmosphere for a future
time and a given location. Human beings have attempted to predict
the weather informally for times, and formally since at least the nine-
teenth century. Weather forecasts are made by collecting qualitative
data about the present state of the atmosphere and using scientific un-
derstanding of atmospheric processes to project how the atmosphere
will change within the next few hours. Once, an all-human endeavour
based mainly upon changes in barometric pressure, current weather
conditions and sky conditions, forecast models are now used to fix fu-
ture conditions.

The dynamics of the atmosphere is governed by physical, chemical,
and even Biological processes which are commonly described by systems
of time and space dependent nonlinear partial differential equations.
Since this kind of mathematical description is slightly complicated, the
form of the equations’ exact solution is usually unknown. In order to

explore its properties or to compute its approximation, further Math-



ematical methods are needed. The resulting atmospheric models are
then to forecast the weather situation, the concentration of an air pol-
lutant, or even the changes in climate.

There are two well-known NWP models namely, National Weather
Service’s Global Forecast System (GFS) and the European Centre for
Medium-Range Weather Forecast, known as ECMWEF model. These
models are also known as the American and European Models, respec-
tively. It is generally mentioned at some context that European models

has produced most accurate global weather forecasts.



Chapter 2

Numerical Weather Prediction

Numerical weather prediction uses mathematical models of the atmo-
sphere and oceans to predict the weather based on current weather
conditions. Post processing techniques such as model output statis-
tics have been developed to improve handling of errors in numerical
predictions.

Both the significance of weather forecasts and the need of knowing
more about atmospheric developments were understood equally soon
after the first wind warnings were published. But very few people re-
alised that mathematics could be used to describe these processes and
produce more exact forecasts than synoptic meteorology ever could.
In the early 20th century, scientists, in particular vilhelm Bjerknes and
Lewis Fry Richardson, established numerical weather forecasting, which
is based on applying physical laws to the atmosphere and solving math-
ematical equations associated to these laws. The discovery of chaos
theory and not least the development of computers greatly improved
the quality of forecasts. Today, meteorologists constantly improve the
various forecasting models designed by the world’s leading weather ser-

vices.

2.1 Numerical Weather Prediction Equations

The Primitive Equations are used as the forecast equations in NWP
models. Vilhelm Bjerknes first recognized that numerical weather pre-

diction was possible in principle in 1904. He proposed that weather



prediction could be seen as an initial value problem in mathematics.
Since equations direct how meteorological variables change with time,
if we know the initial condition of the atmosphere, we can solve the
equations to obtain new values of those variables at a future time (i.e.,
make a forecast). To represent an NWP model in its simplest form,we
can write:

AA
~ =F(4) (2.1)

Where AA gives the change in a forecast variable at a particular point
in space.At gives the change in time(how far into the future we are
forecasting), F(A) represents terms that can cause changes in the value
of A. This equation means that the change in forecast variable A during
the time period t is equal to the cumulative effects of all processes that
force A to change. Future values of meteorological variables are solved
for by finding their initial values and then adding the physical forcing
that acts on the variables over the time period of the forecast. This is

stated as

Aforecast — Ainitial 4 F(A)At (22)

where F(A) stands for the combination of all of the kinds of forcing

that can occur.

2.2 Primitive Equations

Primitive Equations are used as the forecast equations in NWP models.

2.2.1 Momentum Equations

ou ou ou ou 10p )
a——u%—va—lljg—;a—f—fv (23)
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Where u is the Zonal velocity — velocity in the east-west direction



tangent to the sphere, v is the meridional velocity — velocity in the north

-south direction tangent to the sphere, w is the vertical velocity, p is the

density, p is the pressure, f is the Coriolis force, g is the acceleration of

gravity.

2.2.2 Thermodynamic Equation

or _ or or 8T+
ot ox dy 0z

Where T is the temperature.

2.2.3 Mass Continuity Equation

orp 9P  OP oP
ot ' ox dy 0z

Where p is the pressure, p is the density

2.2.4 1Ideal gas law

P = pRT

(2.6)

(2.7)

(2.8)

where P is the pressure,p is the density, R is the gas constant, T is the

temperature.

2.2.5 Hydrostatic eqaution

921
RT

P1:P067

(2.9)



Chapter 3

Numerical Weather prediction

models

An Atmospheric model is a mathematical model made around the full
set of Primitive Equations which rule atmospheric motions. Most at-
mospheric models are numerical. i.e. they are Equations of motion.
The horizontal domain of a model is either Global, covering the entire
Earth or Regional(limited area), covering only part of the Earth.

The different types of models run are:

3.1 Grid Point Model

In the real atmosphere, wind, pressure, temperature, and moisture dif-
fer from location to location in a smooth, constant way. Grid point
models, however, make their calculations on a fixed collection of spa-
tially disconnected grid points. The values at the grid points actually
represent an area average over a grid box. The continuous temperature
field shown in the next graphic, therefore, must be represented at each
grid point as shown by the black numbers in the right panel of the
previous graphic. The temperature value at the grid point represents

the grid box volume average.



Actual smooth and continuous Grid point model representation
temperature field in degrees C (similar of the same temperature field
to spectral model representation) in degrees C
The COMEY Program

Grid point models really represent the atmosphere in three-dimensional
grid cubes, such as the one shown below. The temperature, pressure,
and moisture (T, p, and q), shown in the centre of the cube, repre-
sent the average conditions throughout the cube. The east-west winds
(u) and the north-south winds (v), located at the sides of the cube,
represent the average of the wind components between the centre of
this cube and the centre of the adjacent cubes. Similarly, the vertical
motion (w) is represented on the upper and lower faces of the cube.
This procedure of variables within and around the grid cube (called a
staggered grid) has advantages when calculating derivatives. It is also
physically spontaneous, average thermodynamic properties inside the
grid cube are represented at the centre, whereas the winds on the faces

are associated with changes into and out of the cube.

w

Example of 3-D Grid Box in a Grid Point Model

The COMET Progran



Grid point models must use difference methods to solve the fore-
cast equations. In the real atmosphere, advection regularly occurs at
very small scales. The greater the distance between grid points, the
less likely the model will be able to detect small-scale variations in the
temperature and moisture fields. The lack of resolution introduces er-
rors into the solution of the finite difference equation. Shortages in the
ability of the finite difference approximations to calculate gradients and

higher order derivatives exactly are called Truncation Errors.

3.1.1 Shapes of Grids

Richardson’s effort of predicting weather using grid points set thestage
for future development of grids in different shapes. In order to accom-
modate thespherical shape of the earth and represent the equations
more exactly and efficiently,there are different grid shapes used in nu-

merical models.

Rectangular / Square Grids

The rectangular or square grids is the most commonly used grids in
the NWP models. The rectangular grid is simple in nature but suffers
from the polar problem where the lines of equal longitude known as
meridians, converge to points at the poles. The poles are unique points
and may cause violations of global conservation laws within the model.
To maintain computational stability near the poles, small integration
time-steps could be used, but at great expense. The high resolution
in the east-west direction near the poles would be wasted because the
model uses lower resolution.

A rotated grid can overcome the polar problem for limited area mod-
els, but forglobal models, other grid shapes are used. For example,
Kurihara proposed to use ‘skipped’or ‘Kurihara’ grid. Unfortunately
use of the Kurihara grid causes fakehigh pressure to develop at the
poles. As a result, their use has been strictly limited orabandoned in
finite difference models. However, problems due to the use of the Kuri-
haragrid can be resolved by using more accurate numerical schemes.

In the late 60’s and early70’s, the application of quasi-uniform grids



was proposed as a method to avoid the polarproblem of the grid-point
models. For example, the Global Forecasting System (GFS)model has
roughly a square grid near the equator, a more rectangular grid in the
mid-latitudes,and a triangular grid near the poles, eventually converg-
ing to a point at the poles.Another example of a model that uses the
rectangular grid type is the North American MesoscaleModel (NAM).
When compared to the resolution of the GF'S, the NAM does not havea
grid stretching problem since the model calculates variables close to
the poles. This is dueto the NAM not depend on a latitude-longitude
system for creating its grid bounds and acceptingto a more precise
horizontal measurement system. The other problem with the latitude-
longitude grid is the need for special filters to deal with the pole singu-

larities. They also do not scale well on massively parallel computers.

TRIANGULAR GRIDS

Triangular grids are not used as often in models as are rectangular grids.
One form of quasiuniformgrid whose base element is a triangle is the
spherical geodesic grid. Icosahedralgrids, first introduced in the 1960s,
give almost homogeneous and quasi-isotropic coverageof the sphere.
The grid is made by dividing the triangular faces of an icosahedron into
smallertriangles, the vertices of which are the grid points. Each point on
the face or edge of one ofthe faces of the icosahedron is surrounded by
six triangles making each point the centre of ahexagon. The triangular
faces of the icosahedrons are arranged into pairs to form rhombuses,five
around the South Pole and five around the North Pole. The poles are
chosen as twopentagonal points where the five rhombuses meet. The
main advantage of the geodesic gridis that all the grid cells are nearly
the same size. The uniform cell size allows for computational stability

even with finite volume schemes.

HEXAGONAL GRIDS

Similar to triangular grids, hexagonal grids are also not used as often as
the rectangular/square grids. In this method, variables are calculated

at each grid intersection between differenthexagons, in addition to be-
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ing calculated in the centre of the hexagonal grid.Sadourneydescribes
in detail how the spherical icosahedral-hexagonal grid is constructed.
They solved the non-divergent barotropic vorticity equation with finite
differencemethods on the icosahedral-hexagonal grids. Majewski et al.
develops an approachthat uses local basis functions that are orthog-
onal and conform perfectly to the spherical surface.A study done by
Thuburnshows a method of creating a global hexagonal grid, butthen
using a finite differencing method to calculate the rate-of-change of dif-
ferent variableswithout having to create triangles within the hexagonal
grids. The space differencingscheme using the icosahedral-hexagonal
grid gives a satisfactory approximation to the analyticalequations given
an initial condition and remains nonlinearly stable, for any condition.
Thuburnalso noted that his method may not be as exact as those
which included anadditional point in the centre of the hexagonal grid,
but his method was computationallyfaster, and was able to accurately
show the polar regions since there was no need of stretchingthe grid
in that region. The other advantages of the hexagonal grid are: (i)
Removes thepolar problem. (ii) Permits larger explicit time steps. (iii)
Most isotropic compared to othergrid types. (iv) Conservation of quan-
tities in finite volume formulation. Can be generalized easily to arbi-

trary grid structures.

3.2 Spectral Model

Spectral models represent the spatial variations of Meteorological vari-
ables as a finite series of waves of Differing wavelengths Consider the
map below that shows the 500 — mb height pattern for March 1, 2012.
From this polar stereographic perspective, we can see many long waves

located around the globe.
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500mb GEOPOTENTIAL HEXGHTS (dam) MAR 01 2012

Some variables, such as this 500.mb height patiern, are not welltepresented by a grid-point model. lastead,
& model that iIncorporates wave patterns would be better suited.

Now we can see a gridded version of this height data

One of the first things is that we have almost completely lost the
sense of the waves that make up the pattern. Furthermore, by gridding
the data in such a way, some of the better features of the height patterns
have vanished. Since many variables in the atmosphere can be pictured
by wave-like structures [rather than square boxes|. It turns out there
is a numerical weather prediction model that uses waves instead of grid
boxes, a SPECTRAL MODEL.

The primary spectral model used by the National Centres for Envi-
ronmental Prediction is the Global Forecast System, or GF'S, for short.
Rather than dividing the atmosphere into a series of grid boxes, the
GF'S describes the present and future conditions of the atmosphere by
solving mathematical equations whose graphical solutions consist of a

series of waves.

12



The important concept of the Spectral modelling lies in the idea that
any wavelike function can be replicated by adding various basic waves
together.

Let’s see an example, The green line as an actual 500-mb height
line, for example, stretch across the U.S. and represent a long-wave
point and trough. A spectral model first approximates this pattern by
adding together a set of simple wave functions in this example, varia-
tions of a trigonometric function called the ”sine” are used. We were
able to closely duplicate the green curve by adding together three dif-
ferent wave functions (the red, blue, and purple curves). The resulting
black curve is fairly close to the green curve and has a simple equation
(mathematically speaking, of course) that a computer has no difficulty

interpreting.

destance () —
—

Modeled S00-mb
height patiem

500-mb height (/1)

Hix) = 0.4 sinf30x) + 0.25 sin{10x+49.7) + 0.1 sin{5x+20)

A spectral model attempts to replicate wavelike patterns in key atmospheric variables (here, a sample 500-mb
height line represented by the green curve) by adding together simple wave functions (red, blue, and purple
curves). The resulting sum (black curve) usually represents the observed pattern fairly well, depending on the
number of simple waves contained in the sum. The model then uses the r y simple al
equation describing the sum in its computations.

Thus, the first step in using a spectral model is to analyse the present
patterns in the observed atmospheric variables and then closely repli-
cate these patterns using sums of simple wave functions. One advantage
to this approach is that the way in which wave functions change in space
and time is well known. This mathematical fact helps toprove a major
advantage of spectral models that they run faster on computers. Given
these computational time savings, spectral models better give them-
selves to longer-range forecasts than grid-point models like the NAM
[North American Mesoscale Model]. Grid-point models push modern
supercomputers to their limits just to mix out a respectable threeor
four-day forecast. However, the GF'S is routinely run out to 384 hours

(16 days) four times a day (starting at 00 UTC, 06 UTC, 12 UTC and

13



18 UTC). One final advantage of spectral models is that their solutions
are available for every point on the globe, rather than being tied to a

regular grid collection.

3.3 Hydrostatic Model

Most grid point models and all spectral models in the current opera-
tional NWP models are hydrostatic. This means that no vertical accel-
erations are calculated clearly. The hydrostatic assumption is valid for
synoptic- and global-scale systems and for some mesoscale phenomena.
An important exception is deep convection, where resistance becomes
an important force. Hydrostatic models account for the effects of con-
vection using statistical parameterizations approximating the larger-
scale changes in temperature and moisture caused by non-hydrostatic
processes.

The main advantageof hydrostatic models, it can run fast over limited

area domains, providing forecasts in time for operational use.

3.4 Non-Hydrostatic Model

Currently, most non-hydrostatic models are grid point models. They
are generally used in forecast or research problems requiring very high
horizontal resolution (from tens of meters to a few kilometres) and cover
relatively small domains.

Use of the non-hydrostatic primitive equations, directly forecasting
vertical motion used for forecasting small scale phenomena. Predict
realistic looking, detailed mesoscale structure and consistent impact on
surrounding weather, resulting in either superior local forecasts or large

errors.
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Chapter 4

Mathematical methods used in

weather forecasting

4.1 Finite Difference method

The traditional grid structure is based on dividing the Earth’s surface
into a large number of squares, such that there is a high air column

above each square,

T 18

d Suae

A rectangular grid around the Earth with air columns above the surface.

The atmosphere is then divided into a number of layers, resulting
in a three-dimensional grid, in which the primitive equations can be
solved for each grid point. In general, the layers are much thinner close
to the Earth’s surface than the layers in the upper atmosphere, as most
weather events happen relatively close to the ground. Processes in the

upper atmosphere influence the weather, so the whole of the atmosphere
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has to be considered in a forecasting model. Most models also include
several hidden layers, so as to take the air and water exchange between
atmosphere and ground into account. Over the years, the resolution of
the grids has become higher (i.e. the edge length of each square has

become smaller).
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A triangular grid as used by the DWD.

The world’s leading weather services such as the British Met Office
and the German DWD use three different grids, a global grid cross-
ing the whole planet, a so-called regional model covering Europe (and
North America in the case of the Met Office’s model), and a local model
covering the UK or Germany, respectively. The regional model of the
DWD has a resolution of 7 km, and the local model has a resolution
of up to 2.8 km (the Met Office’s models have coarser resolution as
the Met Office does not work with non-hydrostatic equations). Both of
these local models, and all of the Met Office models, are based on a rect-
angular grid, whereas the DWD’s global model is based on a triangular
grid with a 40 km resolution. The great advantage of the triangular grid
is that the primitive equations can be solved in air parcels close to the
poles without any problems, as opposed to the rectangular grid, where
the longitudes approach each other, resulting in wrong calculations.

Generally, in a terrain following coordinate system, the grid-spacing
in the A-direction is given by A\, similarly A¢ and A( represent the

spacing in the ¢-direction and the (-direction respectively. As in, A\
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denotes the longitude, ¢ denotes the latitude and ( is the height coor-
dinate. The position of the grid points in the computational space is

defined by,

/\—)\0+(l—1)A/\ r=1,......, N)\ (41)
bi=do+(—1DA¢ j=1,...., N, (4.2)
Ck' = ]C k = 1, ...... ,Nc (43)

Here, N, is the number of grid points in the a-direction, A\, and ¢,
are the values of A and ¢ in the southwest corner of the model domain.

Now, the primitive equations have to be re-written in finite difference
form. For this, we need to define approximations to the derivatives at
a definite grid point z; in terms of finite differences. The value of a
variable v at z; is given by 1; and the finite difference for ¢, is given
using the values of ¢ + 1 and v; — 1, i.e. the values at the two adjacent
grid points. The behaviour of these two terms can be defined using

Taylor expansion:

A 2 " A
Py = U + Y AT + 4, (—) () (_a:) (4.4)

ACEQ " A[Eg

) = (S

a7 (4.5)

i = — Y AT + 1y (S

Subtracting the second from the first expansion gives the centred finite

difference approximation to the first derivative of

Yir1 — Y

wl AT + FE (4.6)
The term, ,
Ax

= () (20)) (47)

gives the truncation error and can be omitted since it is small. How-

ever, the lowest power of the difference of x, Az, in E gives the order

17



of the approximation. This scheme has order 2. As mentioned above,
the higher the order, the more accurate the approximation. In gen-
eral, centred finite difference approximations are better than forward
or backward approximations, which can also be derived from the Taylor
expansions for ¢, and ¥;_;. Solving the first expansion for L/)é gives the

forward approximation:

¢ =i
= " "+ F 4.8

These schemes both have order 1, but there are conditions where it
is favourable to use these approximations instead of a centred approxi-
mation. It is also possible to derive the finite difference approximations
to the second and third derivatives of ;.

Not only space, but also time has to be discretized, and time deriva-
tives can also be denoted as finite difference approximations, that is in
terms of values at distinct time levels. A time step is denoted by At,
and a discrete time level is given by t,, = t;+nAt with ¢, being the initial
time for integration. The grid point value of the variable ), at time tn
is denoted by ;' and its derivative can be expressed as a centred finite
difference approximation:

o = PPt
ot’  2At

( +0 (4.9)

Again, O represents the truncation error and can be omitted.

There are two different finite difference schemes, the explicit scheme
and the implicit scheme. The explicit scheme is much easier to solve
than the implicit one, as it is possible to compute the new value of
at time n+1 for every grid point, provided the values of v{); are known
for every grid point at the current time step n. But the choice of the
time step is limited in order to keep the scheme constant. The implicit
scheme, on the other hand, is absolutely constant, but it results in a
system of simultaneous equations, so is more difficult to solve. Both
explicit and implicit schemes are used in current forecasting models.

The approximations described above are very simple examples show-

ing the general idea of finite differences. When the primitive equations

18



are expressed in terms of finite differences, the equations soon become
very long and take some computational effort to solve. Explicit time
integration can be made more effective, though, by applying a so-called
mode-splitting technique. This means that the primitive equations are
subdivided into forcing terms f; referring to slowly varying modes and
source terms s, directly related to the fast-moving sound waves:

o

= = fotsu (4.10)

The terms f, are integrated over big time steps At. These time steps
are then subdivided into several small-time steps At, over which the
terms s, are integrated. In the case that s, = 0, we get, using a 2At

bound interval,

‘/,n—i—l _wn—l
Y _ (2 — n—1 n /71+1 411

representing a set of equations that can be solved using Gaussian elim-
ination. For equations including acoustically active terms, i.e. where
acoustic and gravity waves have to be taken into account, the finite
difference is given by,

,L/)erl _ wm.

i =g

(4.12)

The superscript m is the time step counter for the integration over the
small-time steps AT within the bound interval used above.

The term f is constant throughout the small-time step integrations,
but the value of ?,,,is not known before the last one of these integra-
tions has been completed. Therefore, the finite difference for "+ has
to be re-written as,

. T — g1

fa AL Fo@ 4 o) (4.13)

The term " *! is the result of a process called averaging.We assume
that the mean value of "' does not vary as fast with respect to both

space and time than deviations from the mean would. The notation for
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averaging is

: A A
9 = S+ a"0) + 96— a5l (4.14)

with a being an integer. The notation is similar for the longitude 1.
If we re-write the primitive equations using finite differences, we
get a linear tridiagonal system of simultaneous equations which can be

written in the general form,

—n+1 —n+1 —n+1 -

Akwk41 —+ Bk‘wk + Ckwk«f»l - D]g (410)

The terms A,, B, and ()} are matrix diagonals, whereas D, is an
inhomogeneous term including the appropriate boundary conditions.
The equation system can be solved for using a solving method based

on Gaussian elimination and back-substitution.

4.2 The Spectral method

The spectral method was already invented in the 1950s, but it took a
while before the method was applied in forecasting models. In 1976, the
Australian and Canadian weather services were the first ones to accept
this method, which is now used by a range of weather services across the
globe.The European Forecasting Centre ECMWF adopted it in 1983.
One of the advantages of the spectral method is that the primitive
equations can be solved in terms of global functions rather than in
terms of approximations at specific points as in the finite difference
method. For the ECMWPF, this is the better option as they need a
global model in order to produce medium-range weather forecasts. For
the spectral method, the atmosphere has to be represented in terms of
spectral components. In the ECMWF model, the atmosphere is divided
into 91 layers (in comparison, the DWD’s and the Met Office’s global
models have 40 layers), with the number of layers in the boundary
layer equalling the number of layers in the uppermost 45 km of the
atmosphere. The partial differential equations are represented in terms
of spherical harmonics, which are truncated at a total wave number of

799. This corresponds to a grid length of roughly 25 km (the DWD’s
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and the Met Office’s global model has a resolution of 40 km). While
using the spectral method, we assume that an unknown variable ) can
be approximated in terms of a sum of N+1 linearly dependent basis

functions v, (x) :

N
YRy = anda(x) (4.16)
n=>0

When this series is substituted into an equation of the form Li = f(x),

where L is a differential operator,you get a so-called residual function:
R(:r:ao,al,...,aN) :L\I/N—f (417)

The residual function is zero when the solution of the equation above
is exact, therefore the series coefficients an should be chosen such that
the residual function is minimised, that it is as close to zero as possible.
In the majority of cases, polynomial approximations, such as Fourier
series or Chebyshev polynomials, are the best choice, but when it comes
to weather forecasting, the use of spherical coordinates demands that
spherical harmonics are used as expansion functions. This increases the
difficulty of the problem, and the computational effort required to solve
it. A simple example that can be solved in terms of a Fourier series
shows the idea of the spectral method. One of the processes described
by the primitive equations is advection (which is the transport of for
instance heat in the atmosphere), and the non-linear advection equation
is given by

ou ou

This can be re-written in terms of the longitude A:

Jdu ou
5 gy =0 (4.19)

Having chosen appropriate boundary conditions, the equation can be
expanded in terms of a finite Fourier series:
M

u(A t) = Z Uy (1) ™ (4.20)

m=—M
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where the u,, are the complex expansion coefficients and M is the

maximum wave number. The advection equation then,

M 2M

> = d“m ™1 Y Fe™ (4.21)

m=—M m=—2M

where I, is a series in terms of them.

As each of the terms on the left-hand side of the equation has been
truncated at a different wave number, there will always be a residual
function. There are several methods which convert differential equa-
tions to distinct problems, for example the least-square method or the
Galerkin method, and which can be used in order to choose the time
derivative such that the residual function is as close to zero as possible.

It is difficult to calculate the non-linear terms of a differential equa-
tion in the setting of the spectral method, but you can get around
this problem by using a so-called transform method. Most commonly,
Fast Fourier Transforms are used, but in principle all transform meth-
ods make it possible to switch between a spectral representation and
a grid-point representation. Using a transform method requires three

steps, which will be shown for the non-linear term,

ou

usy (4.22)

In the advection equation above. Firstly, the individual components of

the non-linear term u and

Oou
D = B\ (4.23)

are expressed in terms of spectral coefficients at discrete grid points \;,

M) = Z U ™M (4.24)

- Z Z'T’“Lmeim)\l (4-25)

Secondly, the advection term, that is the product of these components,
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is calculated at every grid point in the discretised space
F(A) = u(M)D(A) (4.26)

Then you can return to the spectral space and calculate the Fourier

coefficients,
1 .
F,=— E F FiiAy 4.2
T 9 - (Al)e ( 7)

This procedure has to be done at every time level, so results in a
significant amount of calculation. Furthermore, products with more
than two components suffer from aliasing, meaning that waves that are
too short to be resolved for a certain grid resolution falsely appear as
longer waves. Still, using transform methods is necessary in order to
solve differential equations in spectral space. As mentioned above, a
dependent variable i has to be expanded in terms of spherical har-
monics rather than Fourier coefficients when spherical coordinates are
used. Spherical harmonics Y"(), ¢) are the angular part of the solution
to Laplace’s equation. The vertical components of velocity

dz

= — 4.2
Y= (4.28)

transform like scalars, so can be expanded in terms of spherical har-

monics straightaway. It is slightly more complicated for the horizontal

components
Uy = le;\anduw Ccl;f (4.29)
U=uwursing = > tnnY'(A,¢) (4.30)
= UgSING = Z VY o A (4.31)
with the spherical harmonics
Y (A 9) = €™ P (9) (4.32)
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Yo (A ) = eT AP (9)(-1)" (4.33)

where m and n are non-negative integers such that » > m. Here,
m is the zonal wave number, and n is the total wave number. The
term P'(¢) is the associated Legendre function used in spherical har-
monics (but will not be explained here). In general, spectral method
algorithms are more difficult to program than their finite difference
counterparts, also the domains in which they are used have to be reg-
ular in order to keep the high accuracy of this method. However, the
spectral method has a number of advantages, for example, there is no
pole problem when the method is used. At the poles, the solutions
to differential equations become infinitely differentiable, therefore the
poles are usually excluded from the spectral space, which actually sim-
plifies the method. Furthermore, it can handle finite elements of higher
orders than the finite difference method can. As a result, the solutions
of many problems are very precise. The high accuracy also results in
the fact that the models do not need as many grid points as in the
finite difference method, and computers on which the method is run
require less memory space. Summing up, the spectral method gives
much more accurate results than the finite difference method. Many

weather services still use the finite difference method though because

it is much easier to implement.

4.3 Finite Element method

A third technique for finding approximate solutions to partial differen-
tial equations and hence to the primitive equations is the finite element
method. It is quite similar to the spectral method in that a dependent
variable v is defined over the whole domain in question, rather than at
discrete grid points used in the finite difference method. Furthermore,
a finite series expansion in terms of linearly independent functions ap-
proximates the variation of ¢ within a specified element (e.g. a set of
grid points). Unlike the spectral method, the basic functions are not

globally, but only locally non-zero, also they are low-order polynomials
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rather than high-order polynomials. The domain for which the par-
tial differential equations have to be solved is divided into a number of
subdomains, and a different polynomial is used to approximate the solu-
tion for each subdomain. These approximations are then combined into
the primitive equations. A condition for the finite element method to
work, however, is that ¢ is continuous between neighbouring elements.
The fact that only low-order polynomials can be used is reflected in
the relatively low accuracy, but the amount of necessary calculations is
much smaller than for finite differences or for spectral methods. On the
other hand, there are a number of choices for the basic functions, and
depending on which functions are used, the finite element method can
give very accurate results when it is applied to irregular grids. Thus,
the use of this method is not restricted to triangular and rectangular
grids only as the finite difference method. This is probably more im-
portant in engineering and fluid dynamics, where this method is most
widely used. However, scientist is constantly trying to improve existing
and find new mathematical methods that model atmospheric processes

better than the methods in use nowadays.
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Chapter 5

Applications of Atmospheric
Models

5.1 Climate Modeling

A climate model is a computer program designed to simulate Earth’s
climate in order to understand and predict its behaviour. Climate mod-
els are mainly based on a set of mathematical equations that describe
the physical laws which rule the behaviour of the atmosphere and ocean,
and their interactions with other parts of Earth’s climate system. (e.g.
land surface and ice sheets). Processes for which fundamental equations
are not known or which occur at scales smaller that the grid resolution
(e.g. clouds, vegetation) are represented actually. The mathemati-
cal equations define how variables such as temperature, pressure, and
wind change over time. These equations are solved using very large
supercomputers. Observations are also used to develop the models,
mainly in the testing phase. These observations come from tools such
as ocean signals, weather balloons, satellites, and instrumented com-
mercial aircraft. When the forcing factors (e.g. intensity of the sun,
concentrations of greenhouse gases, dust from volcanic eruptions) are
prescribed to the model, they can be used to simulate the past and
present climates, and possible future climates given situations of fu-
ture anthropogenic emissions. The models represent Earth’s climate

by dividing the surface, ocean and atmosphere into a grid. Imagine
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each part of the Earth has its own box. In global models the spac-
ing (or size) of these boxes is typically in the range of 100-300 km.
In regional climate models the spacing is typically smaller, 10-50 km.
For each box, the change in a variable (such as wind, temperature, or
rainfall) over a specified amount of time is calculated. The time step
(the amount of time between each calculation) depends on the size of
the grid boxes and is usually a few minutes to about half an hour in
order to solve the equations with sufficient accuracy. Models can be
made up of millions of grid boxes, and are run over many thousands of
time steps.This can result in the simulations taking months to produce.
A number of simulations (an ensemble) are made for each scenario to
estimate the mean climate and the uncertainty due to natural climate
variations. The climate system is very complex. Models allow us to test
theories in a controlled environment. Climate models can help us pre-
dict how the climate might differ in the future. They can improve our
understanding of variables such as temperature, precipitation, oceanic
currents and sea ice cover. Climate models are the only scientific tool
with the potential for making regional predictions about future climate.
We are confident that models provide useful information because they
are based on well-known physical laws and reproduce many features of

the observed climate, including how it has changed in the past.

5.2 Air Quality Modeling

Air quality dispersion modelling uses computer simulation to predict
air quality concentrations from various types of emission sources. For
pollutants emitted through a stack, it considers the emission rate, stack
height, stack diameter, and stack gas temperature and velocity, as well
as the effect of nearby buildings and terrain. Other emission sources like
vehicle traffic or wind erosion from storage loads are represented as 2-
dimensional area sources or 3-dimensional volume sources. Air quality
dispersion models use meteorological data such as temperature, wind
direction, and wind speed to calculate concentrations. Modelling is of-

ten used to predict possible impacts on air quality from new or adapting
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emission sources. Model predicted concentrations are compared with
the national and state ambient air quality standards to ensure protec-
tion of Minnesota’s air quality in light of potential future emissions.
Modelling can also be used to site ambient air monitors and inform

human health and ecological risk valuations.
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Chapter 6

Conclusion

Numerical forecast is known for the accurate data as observed during
the forecast at the beginning of its run or at initial conditions we can
say. As it is known that weather changes rapidly from one place to
another, tomorrow’s weather is definitely influenced by today’s weather,
and similarly next week’s weather can be affected by today’s weather a
continent away. Therefore, lots of worldwide data is required to make
the predictions. Numerical Weather Prediction is imprecise because
the equations used by the models to simulate the atmosphere are not
accurate. It leads to some error in predictions. Moreover, as we do not
receive many weather observations from mountain regions or over the
oceans, therefore, many gaps persist in the initial data. And so, the
computer’s prediction of how that initial state will evolve will not be

entirely accurate if initial conditions were not completely known.
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