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PREFACE 

The thesis entitled ‘Study on the chaotic systems control and 

synchronization’ comprises the study of nonlinear dynamics of neurons. The 

nonlinear dynamics of a neuron can generate deterministic chaos under some 

conditions. The theoretical and experimental studies on chaotic neural dynamics 

shall help to understand functions of brain such as adaptation, perception, 

episodic memory, learning, awareness, intentionality and thought. Also studies 

on the effect of electromagnetism in brain gives a pathway to the quantum mind 

theories of brain dynamics. The work addresses how chaos in neural systems 

accomplishes synchronization, anti-synchronization, oscillation death, amplitude 

death and near death rare spikes which may eventually lead to different 

biologically important goals. 

The thesis is divided into 7 chapters. Though each chapter may stand on 

its own, each contributes to the broader scope of the thesis which is the study of 

chaotic or nonlinear dynamics of selected systems. 

Chapter 1 

This chapter deals with introductory ideas of nonlinear dynamics and 

chaotic systems. Chaotic systems manifest itself in a number of phenomena in 

both laboratory and in day to day dealings. The dynamical characterization tools 

of chaotic systems such as phase portraits, attractors, time series analysis, 

Lyapunov Exponent, stability of dynamical systems, bifurcations and routes to 

chaos are described. Some ideas related to control and synchronization in 

chaotic systems are also addressed. 

  



Chapter 2 

Chapter 2 deals with basic principles of Neuronal Dynamics. Theoretical 

and computational neuroscience focuses on models of single neuron. Dynamical 

and structural basis of brain activities, various biological neural models and its 

importance are discussed. Brief ideas of neural excitability and different modes 

of spiking are also addressed in this section. 

Chapter 3 

Chapter 3 of the thesis presents the investigation on the possibilities of 

couplings like linear indirect synaptic, nonlinear cubic feedback and memristor 

based couplings in the H-R neuron model. The nano-scale two-terminal device, 

memristor acts like a resistor with memory and is therefore of great interest to 

be used as a synapse in hardware of artificial neural networks. It is relevant to 

study the possibilities of different memristor couplings in neuromorphic 

systems. The influence of different memristor couplings such as cubic, 

quadratic and exponential flux controlled memristor on the neurons is 

investigated. The linear stability analysis for the dynamics of H–R neurons for 

nonlinear feedback and for various types of flux-controlled memristor couling is 

done. The complex behaviour of neural systems are predicted with respect to 

Lyapunov Exponents. The simulation results of these coupling schemes show 

the presence of synchronization, amplitude death, oscillation death and behavior 

like near death rare spikes for the neuronal systems. In most of the schemes the 

coupling strength summarizes information distribution between neurons. The 

bifurcation diagrams show the qualitative change of dynamical behaviour of 

neurons and maximum Lyapunov Exponent plots show the range over which 

neuronal behaviour is chaotic. 

 



 

Chapter 4 

This chapter focuses on the effect of electromagnetic radiation in 

nonlinear response of biological neuron systems. The nonlinear response of four 

variable (improved) Hindmarsh-Rose neuron model is selected and memristor is 

incorporated to understand the fundamental mechanisms of the network of 

neurons on cellular level. Memristor acts as the bridge between magnetic flux 

and membrane potential of the neuron. Induction of multiple modes via 

electrical activities of neurons is analysed with single and coupled neurons with 

quadratic flux controlled memristor. 

H-R model is also examined under the influence of Gaussian noise. 

When Gaussian noise is added to the system, the oscillation death is achieved 

for relatively smaller magnitude of external current and it also leads to the 

inhibition of quiescent activity under periodic current. Hamilton energy is 

calculated to understand the response of action potential of the neuron to the 

external forcing current. It would be helpful to study the energy consumption 

and supply in neurons. The changes of action potential and mode of transition in 

electrical activities among neurons are related to Hamilton energy estimated by 

Helmholtz theorem. Bifurcation of Inter Spike Interval (ISI) versus current is 

also plotted and it exhibits denser pattern as compared with that of cubic flux 

based electromagnetic induction. Stability analysis of the system and electrical 

activities of neuron with exponential flux controlled memristor is also studied. 

Hence the work gives a pathway to understand influence of electromagnetic 

flux on the overall activity of neurons and it is established that it introduces 

high nonlinearity to the neuron model. 

  



Chapter 5 

Effect of field coupling and memristor on electromagnetic induction of 

neurons are analysed in this chapter. It is possible to analyse the 

synchronization and pattern selection in neuronal network under chemical or 

electric synapse coupling. Field coupling is regarded as a form of 

communication within the nervous system caused by exchange of ions between 

cells or as a result of local electric fields. For isolated and coupled neurons 

multiple modes in electrical activities are analysed for increase in the intensity 

of field coupling. As the external forcing current increases the system shows 

various dynamics such as oscillation death, tonic spiking, desynchronization 

and synchronization. Further it is observed that under the high coupling strength 

the oscillation suppression of coupled systems is achieved by high value of 

external current. 

It is observed that for network of 300 H-R neurons, the neuron 

oscillators show incoherent as well as synchronization behaviour. Control 

inputs for the system is analysed and stability of system is confirmed by the 

negative value of Transverse Lyapunov Exponent plot. It is observed that under 

field coupling excitability of neurons can be changed and hence this coupling 

can produce signal exchange between neurons even if synapse is absent. 

Chapter 6 

The superconducting circuit, like the Josephson Junctions can also 

model neurons. In Josephson Junctions it is possible to sustain action potentials 

upto picosecond range. Based on the law of electromagnetic induction, the 

Josephson Junction circuit model can be improved to consider effect of 

electromagnetic induction by introducing the magnetic flux variable in to the 

model. In this chapter, the influence of memristor on the dynamic behaviour of 



 

Josephson Junctions is examined. This adds more nonlinearity to the selected 

systems. It is found that dynamical behaviours and electrical modes are much 

dependent on magnetic flux. Here cubic flux controlled and logarithmic flux 

controlled memristors are selected to introduce the flux to the model. Different 

dynamics such as fast periodic spiking, double periodic spiking and suppression 

of oscillations are resulted in. Modulation of chaotic oscillation in the model 

can be controlled by memristor. 

Further, electric activity of H-R neuron is studied on coupling with the 

Josephson Junction chaotic circuit based on the Lyapunov stability theory. The 

possibility of synchronization of the Josephson Junction neurons with that of  

H-R neuron model is investigated. Depending on gain coefficients different 

chaotic phenomena such as spiking, bursting, tonic spiking and breaking of 

complete synchronization are observed between the Josephson Junction and the 

H-R neuron. Neuromorphic computing with in the frame work of ultra fast and 

low energy superconducting digital circuit can be achieved using this 

technology. 

Chapter 7 

Concluding remarks and discussions are included in chapter 7. 
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Introduction 

The ideas of dynamical chaos have altered the understanding of the 

origin of random behaviour in many fields. In this section some insights on 

introductory ideas of nonlinear dynamics and chaotic systems are given. 

Chaotic systems manifest itself in a number of phenomena in both laboratory 

and day to day dealings. The tools for characterization of chaotic systems such 

as phase portraits, attractors, time series analysis and Lyapunov Exponent are 

explored in this chapter. The stability of dynamical systems, bifurcations and 

routes to chaos are also described in the following sections. Some techniques 

related to control and synchronization in chaotic systems are also addressed. 

1.1  Brief history of chaos  

Since antiquity, historians and researchers have noted the idea that small 

causes can sometimes have larger effects. Chaos theory has claimed the 

attention of scientists from 19th century onwards[1]. Many complex systems can 

be better understood through the lens of Chaos Theory. In 1890 Henri Poincarè 

[2]found sensitive dependence on initial conditions in a particular case of three 

–body problem and later proposed that such phenomena is common in the field 

of meteorology. He noted that very small fluctuations in initial conditions of the 

system could result in very diverse outcomes. The unpredictability of the 

problem is due to the extreme sensitiveness to initial conditions and it gives the 

notion of “chaos”. Also Jacques Hadamard pointed out the divergence of 

trajectories in spaces of negative curvature (1898) [2,3]. In the 1800s there had 

been work on nonlinear oscillators in connection with models of musical 

instruments. In 1927 Balthazar van der pol Balthazar [4] noted occasional 

"noisy" behaviour in a vacuum tube oscillator circuit which is governed by a 

simple nonlinear differential equation. 
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Other significant milestones in the theory of dynamical systems were 

initiated after discoveries of Henri Poincarè. In the 1950's, Kolmogorov, 

Arnold, and Moser focused their attention on the persistence of motion of quasi-

periodic oscillators and proposed the fundamental KAM Theorem[5]. The 

discovery and subsequent work contributed to explain the inaccuracy of long-

term weather forecasting and were summarized by E. Lorenz with famous 

statement: “Does the flap of a butterfly’s wings in Brazil set of a tornado in 

Texas?” [6]. That is how the sensitivity to initial conditions (‘SIC’ness) was 

also known as the ‘butterfly effect’. After this major turn, research on nonlinear 

dynamics stepped up. In 1971, David Ruelle and Floris Takens proposed an 

alternative mathematical explanation of the turbulence in fluid dynamics based 

on the existence of strange attractors [7]. A couple of years later, Tien-Yien Li 

and James A. Yorke used the term chaos to describe the erratic and 

unpredictable behaviours arising in deterministic nonlinear maps [8]. At the 

same period, Mitchell J. Feigenbaum unraveled universality of behaviour 

occurring in a particular class of systems as they make transition to chaos, and 

derived the Feigenbaum constant[9]. 

1.2  Fundamentals of chaotic systems 

1.2.1  Sensitivity to initial conditions 

Chaos is aperiodic long-term behaviour of deterministic systems. It 

exhibits sensitive dependence on initial conditions[10]. If the trajectories of the 

system do not settle down to fixed points, periodic orbits or quasiperiodic orbits 

as time progresses, then the system exhibits aperiodic long term behaviour [10]. 

‘Deterministic’ means that the systems behaviour can be determined by 

analytical or numerical computations. The irregular behaviour arises from the 

system's inherent nonlinearity[11]. “Sensitive dependence on initial conditions” 

(‘SIC’ness) indicates that nearby trajectories separate exponentially fast. As a 
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result, any error in our knowledge of the initial conditions of the system will 

amplify rapidly, making its behaviour effectively unpredictable. 

An example of ‘SIC’ness can be demonstrated using the logistic map 

(Figure 1.1). Let us consider the logistic map. As we plot the orbits of the map 

for different initial conditions, it is observed that the two orbits are initially very 

close. However, they quickly lose correlation and eventually seem to be entirely 

different from each other after some time. 

 

Figure 1.1: Logistic map: Sensitivity to initial conditions (adapted from [12])  

1.2.2  Divergence in Phase Spae  

The concept of the phase space was developed by Ludwig Boltzmann, 

Henri Poincaré and Willard Gibbs in the late 19th century [13]. A phase space is 

a space in which all possible states of the system are represented, with each 

possible state of the system corresponds to one unique point in the space. A plot 

of multiple phase curves corresponding to different initial conditions in the 

same phase plane is known as phase portrait. For mechanical systems, the phase 

space usually consists of all possible values of position and momentum 

variables (Figure 1.2 and Figure 1.3). Thus, for a single particle, there are three 
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position coordinates, and also by the t

Figure 1.2: Phase portrait of SHM and for the pendulum rotations are resulted 
in as the energy is increased beyond a parti
math world [14])  

 

Figure 1.3: 3D phase plot of Lorenz attractor 
global divergence of the trajectory
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dom (x, y and z); and the state of the particle is defined by

coordinates, and also by the three coordinates of the momenta

Phase portrait of SHM and for the pendulum rotations are resulted 
in as the energy is increased beyond a particular value (adapted from wolfram 

3D phase plot of Lorenz attractor which exhibits 
of the trajectory (adapted from[15,16]) 

the particle is defined by three 

hree coordinates of the momenta. 

 

Phase portrait of SHM and for the pendulum rotations are resulted 
cular value (adapted from wolfram 

 

exhibits the local and 
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1.2.3  Positive Lyapunov exponent 

The Lyapunov Exponent (LE) or Lyapunov characteristic exponent of a 

dynamical system is a quantity that characterizes the rate of separation of 

infinitesimally close trajectories �(�)and ��(�) in phase space [17,18]. 

��(�) = �	
��(�)   (1.1) 

�	is the Lyapunov Exponent. 

Lyapunov Exponent can be positive, negative or zero depending upon 

different orbits and this parameter decides whether the trajectory converges or 

diverges. 

If a trajectory �(�) given by the n dimensional linear ordinary 

differential equation, with constant coefficients 

�
 = �� + �(�) (1.2) 

If the constant coefficient matrix	� has n Eigenvalues	��, ��,………….�� 

then the real part of n different eigenvalues are naturally Lyapunov Exponents. 

The maximal Lyapunov Exponent can be written as 

���� = lim
→� lim�� →�
�



!" ��(
)

�� 
  (1.3) 

��� → 0, ensures the validity of the linear approximation at any time. It is 

required that the two limits cannot be exchanged, otherwise, in bounded 

attractors, the result would be trivially 0. 
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For a dynamical system with evolution equation �
	in an n–dimensional 

phase space, the spectrum of Lyapunov exponents	{��, ��,………….��}generally 

depends on the starting point	�� 

The Lyapunov Exponents describe the behaviour of vectors in the 

tangent space of the phase space and are defined from the Jacobian matrix 

&
(��) =
'()(�)

'�
|�  (1.4) 

Where the Jacobian matrix &
 describes how a small change at point �� 

propagates to the final point �
(��). The limit 

lim
→�[ &
. (,-."/01"/�(&
)]
3
4) (1.5) 

Defines a matrix	5(��). If Λ7(��) are the eigenvalues of 5(��) 

The Lyapunov Exponent �7 are defined as 

�7(��) = 8"Λ7(��)  (1.6) 

For a dissipative system, as criterions, it is proposed that, if the attractor 

reduces to  

(a)  Stable fixed point then all the exponents is negative; 

(b)  Limit cycle which indicates that an exponent is zero and the remaining 

ones are all negative;  

(c)  k-dimensional stable torus then the first k LEs vanishes and the remaining 

ones are negative;  
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(d)  Strange attractor generated by a chaotic dynamics, then it implies that at 

least one exponent is positive.  

1.2.4  Attractors  

There are two types of attractors, namely, non-strange attractors and 

strange attractors. To which attractor does the trajectory ends up depends on the 

initial conditions. The closure of the set of initial conditions which approaches 

given attractor is called its basin of attraction. In many nonlinear systems, the 

boundary between basins is not smooth and has a fractal structure [19,20]. 

1.2.4a  Non-Strange Attractors 

 Non-strange attractors are further classified into:- 

� Fixed point: These are attractors whose orbits approach an equilibrium 

state. Here, the system converges to a single point known as the fixed 

point. It is stable if the particle displaced slightly away from it returns to 

the same point. Unstable fixed points are known as saddle points. 

� Limit cycle: These are attractors whose orbits exhibit periodic motion. 

In the case of dynamical systems with two dimensional phase space, a 

limit cycle is a closed trajectory in the phase space having the property 

that at least one trajectory spirals into it as time approaches infinity or 

negative infinity[19]. Such behaviour is exhibited in some non linear 

systems. As time approaches infinity, if all the neighboring trajectories 

approach the limit cycle, then it is called an attractive or stable limit 

cycle. While on the other hand, if all the neighboring trajectories 

approach the limit cycle as time approach negative infinity, then it is 

called a non-attractive or unstable limit cycle.  
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� Torus: These are attractors whose orbits exhibit quasi-periodic motion 

which means it exhibits almost but not periodic motion. This means that 

they are the sum of periodic functions with incommensurate frequencies. 

It is a three dimensional doughnut shaped attractor. 

1.2.4b Strange Attractor 

Often, the term strange is used for attractors that show chaotic nature. 

But it is not necessary that an attractor should be chaotic in order to be called 

strange even though most of the strange attractors exhibit chaotic behaviour. An 

attractor is strange if it has a fractal structure [21]. In other words, if an attractor 

has a fractal attracting set, it is called a strange attractor. They are characterized 

with positive Lyapunov Exponent, which indicates exponential divergence of 

the trajectories. Another important feature is that they have three or more than 

three degrees of freedom. If a strange attractor is chaotic i.e., if it exhibits 

sensitivity to initial conditions, then any two arbitrarily close initial points on 

the attractor, after various number of iterations will be very far apart from each 

other. But after number of various iterations, it will lead to points that are 

arbitrarily close together. Thus a chaotic attractor associated with a dynamic 

system is said to be locally unstable but globally stable. The term strange 

attractor was put forward by David Ruelle and Floris Takens[21,22] to describe 

the attractors resulting from a series of bifurcation of a system that described 

fluid flow. Examples of strange attractors include the double scroll attractors, 

Hénon attractor, Rössler attractor, Tamari attractors and the Lorenz attractor 

(Figure 1.3)[15-24]. 
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1.2.5  Bifurcation 

The change in the qualitative character of a solution as a control 

parameter varied, is known as bifurcation[25]. This occurs where a linear 

stability analysis yields instability. 

In the case of a dynamical system, its behaviour is influenced by the 

value of control parameters and this change in behaviour is studied by making 

use of the bifurcation plots of the system. The control parameters could be the 

amount of strength of an interaction, the amplitude and frequency of a periodic 

perturbation or some other quantity. The control parameters may suddenly 

change a stable equilibrium position into two such positions, or a system 

initially at rest may set into oscillations. This phenomenon of additionally 

arising solutions or solutions that all of a sudden changes its character is called 

bifurcation or branching. In brief, bifurcations are the most observed transitions 

in the dynamical system as the control parameter is varied. 

There are local and global bifurcations. If the behaviour of a system in 

the neighborhood of an equilibrium solution is changed, it is called a local 

bifurcation. If the structure of the solutions is modified on a larger scale, it is 

called global bifurcation. Bifurcation from a steady solution with linear analysis 

predicts existence of two possible classes of behaviour as a single control 

parameter is changed. If complex conjugate pair of eigenvalues passes through 

the imaginary axis in the complex plane, then it is Hopf bifurcation. It is also 

possible to get bifurcation from periodic solution.  

1.3 Routes to Chaos 

Nonlinear systems can exhibit various dynamics apart from chaotic ones 

(If the dimension is large enough). This diversity and the transitions occurring 
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between each of them can be probed by varying one or several system's 

parameters is called bifurcation parameters. This makes it possible to observe a 

cascade of bifurcations to stable attractors until a strange attractor is reached. 

This is called a route to chaos. In the literature, the routes to chaos are 

graphically represented by a bifurcation diagram. Here the system's output is 

plotted as a function of the bifurcation parameter. The most commonly used 

scenarios are Intermittency route to chaos, Quasiperiodic route to chaos, and 

Period-doubling route to chaos. 

Intermittency route to chaos 

Here a single bifurcation is responsible for the alternation (or 

intermittence) of zones of chaotic motion with zones of smooth regular 

motion[26]. As the bifurcation parameter increases, the turbulent zones last 

longer and eventually, above a critical threshold, the system is always turbulent 

(or chaotic). Intermittency can be seen in Rayleigh-Bernad convention and in 

stirred chemical reactions. 

Quasi-periodic route to chaos 

It is also called the Ruelle-Takens-Newhouse route to chaos. It consists 

of the following succession of three bifurcations when the bifurcation parameter 

is steadily increased: First, a Hopf bifurcation that leads to a stable limit-cycle 

of period T, second a Torus bifurcation that leads to a quasi-periodic dynamics 

with two incommensurate frequencies associated with a torus attractor T2, and 

finally a last bifurcation turns the torus T2 into a new attractor T3 with three 

incommensurate frequencies, which rapidly destabilizes into a strange (chaotic) 

attractor. This type of transitions can be observed inconvection and solid state 

experiments. 
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Period-doubling route to chaos  

It is also called Feigenbaum route to chaos. Here a steady state is first 

destabilized through a Hopf bifurcation resulting in a limit cycle of period T. 

Then, this limit cycle undergoes a cascade of period-doubling bifurcations until 

the n−th limit cycle of period 2nT destabilized and the strange attractor 

becomes stable. Period doubling cascades can be observed in fluid convention, 

in nonlinear circuits and in lasers. 

1.4  Stability Analysis 

The stability theory helps to draw conclusions about the behaviour of a 

system without actually computing its solution trajectories. The first person to 

study stability in the modern sense was Lagrange (1788)[26], who analyzed 

mechanical systems with Lagrangian mechanics. One of his conclusions was 

that, in the absence of external forces, an equilibrium of a conservative 

mechanical system is stable if it corresponds to a minimum of the potential 

energy. The Russian mathematician A. M. Lyapunov(1892), introduced the 

basic definitions of stability that are in use today which was helpful to prove 

many of the fundamental theorems.  

Lyapunov stability[27] is concerned with the behaviour of the 

trajectories of a system when its initial state is near an equilibrium. From a 

practical viewpoint, this issue is very important because external disturbances 

such as noise, wind, and component errors are always present in a real system to 

knock it out of equilibrium. The Lyapunov theory is an indispensable tool in the 

analysis and synthesis of nonlinear systems. Lyapunov theory abounds in a 

variety of notions of stability namely: stability, asymptotic stability and 

exponential stability. 
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For a continuous system,  

A vector �9 = 0 is an equilibrium point if  

	�(�9)=0 (1.7) 

Several types of stabilities can be described as follows 

• Lyapunov stability 

An equilibrium point	�9 is stable in the Lyapunov sense if for all               

: > 0,	there exist	�(��, :) such that 

	∀� > ��	, ∥ 	�(��) − �9 	 ∥< �(�@ , :) 	⇒∥ �(�) − �9 ∥< :  (1.8) 

It guarantees that the trajectory of the system in phase space will remain 

in the vicinity of the equilibrium point if the initial state belongs to this vicinity. 

If � does not depend on ��, the stability is said to be uniform. 

• Asymptotic stability  

An equilibrium point is asymptotically stable if  

	∥ �(��) − �9 	 ∥< �(:) 	⇒∥ 	�(�) − �9 ∥< : (1.9) 

Asymptotic stability includes the Lyapunov stability, but it imposes for 

all trajectories initiated in the neighborhood of the equilibrium point to 

converge asymptotically to it.  

A system is globally asymptotically stable if for all trajectories	�(�), 

lim
→� ∥ �(�) − �9 ∥= 0   (1.10) 

here the system has a unique equilibrium point. 
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A major inconvenience with the definition of stability is that it requires 

to find the the system’s trajectory. 

• The direct method of Lyapunov stability analysis 

It is also called the second method of Lyapunov stability analysis which 

allows to determine the stability of the system without explicitly integrating the 

differential equation 

�
 = �(�, �) where 	�(��) = ��  (1.11) 

If there is some measure of energy in a system, it is possible to study the 

rate of change of energy of the system to ascertain stability. 

• The indirect method of Lyapunov stability analysis 

This method uses the linearization of a system to determine the local 

stability of the original system 

Table 1.1 Summary of basic theorem of Lyapunov[27] 

 Conditions on V(x,t) 
Conditions 
on -5(
 x,t) 

Conclusion 

1 
Locally positive definite 
functions (lpdf) 

≥ 0 locally Stable 

2 lpdf, decreasing ≥ 0 locally Uniform stable 

3 lpdf, decreasing lpdf Uniformly asymptotically stable 

4 pdf, decreasing pdf 
Globally uniformly 
asymptotically stable 
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Figure 1.4: Phase portraits for stable and unstable equilibrium points (adapted 
from[27])  
 

• Transverse Lyapunov exponents 

When the chaotic systems are coupled they may exhibit identical 

oscillations with the onset of synchronization. There are several methods for 

investigating the synchronization problems. One of the method is based on 

conditional Lyapunov Exponents which are calculated along the typical 
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trajectory of the system[28]. This is also known as global Transversal Lyapunov 

Exponent. When all global Transversal Lyapunov Exponents of system driven 

by the signal are negative then the systems synchronize. 

In the presence of noise, in the neighborhood of unstable periodic orbits 

there may exist regions where trajectories may be pushed away from 

synchronization subspace. Such situation occurs when one of the Lyapunov 

Exponents associated with the measure supported by the periodic orbit is 

positive. Small noise could force the trajectory to enter such a region. 

Another method to check the possibility of the synchronization is based 

on Transversal Lyapunov Exponents which are computed along periodic 

orbits[29,30]. In order to ensure synchronization one should compute 

Transversal Lyapunov Exponents for all periodic orbits and check whether they 

are negative[29,30]. This is a difficult task. Even if a periodic orbit attracts the 

trajectory to the synchronization space it is possible that it repels trajectories 

locally. If all the eigen modes corresponding to the eigenvalues are in the range 

of negative Transverse Lyapunov Exponent, then the corresponding 

synchronous state is stable. 

Lyapunov exponents �7(�) of a trajectory based at � are the logarithms 

of the eigenvalues of the matrix[30] 

Λ(�) = limC→�([,C(�)]D,C(�))
3
4E (1.12) 

For discrete systems 

	,C(�) = FGHGCI�(�)J………FGHG(�)JFG(�)   (1.13) 
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It is the composition of	8 Jacobians. For continuous system 	,C(�) is the 

matrix of partial derivatives of the time –L map induced by the continuous time 

system. 

Local Lyapunov Exponents �7(�, 8) are the logarithms of the eigen 

values of the matrix 

Λ(�, 8) = ([,C(�)]D,C(�))
3
4E  (1.14) 

Local Lyapunov Exponents shows how rapidly perturbations of the 

initial point x changes in L steps from the moment of perturbation[30]. 

Local Transversal Lyapunov Exponents are the local Lyapunov 

Exponents corresponding to eigenvectors transversal to the synchronization 

subspace[30]. It tells how trajectories of the coupled system are repelled or 

attracted to the synchronization subspace in time L. 

Global Transversal Lyapunov Exponents, which are frequently used for 

the investigation of synchronization gives stability information which is 

averaged over the whole attractor. 

1.5  Control of chaos 

Control of chaos is a process where a very small perturbation is applied 

to a chaotic system. It helps to realize a desirable chaotic, periodic, or stationary 

behaviour[31]. Certain techniques employed for controlling chaos are feed-

forward ('non-feedback'), control based on periodic excitation of the system, the 

'Ott-Grebogi-Yorke method' (based on the linearization of the Poincaré map), 

the 'Pyragas method' (based on a time-delayed feedback) and the traditional 

control-engineering methods including linear, nonlinear and adaptive 

control[31]. 
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1.5.1  Control goals: stabilization 

A typical goal for control of chaotic systems is stabilization of an 

unstable periodic solution (orbit). Let x(�) be the T-periodic solution of the free 

system with initial condition �(0) = �� i.e,	�(� + ,) = �∗(�) for all � ≥ 0. If 

the solution �∗(�) is unstable, then the stabilization solution will fulfill the 

condition 

lim	
→@[�(�) − �∗(�)] = 0  (1.15) 

Let there is a driving output L(�) to the desired output L∗(�) 

lim	
→@[L(�) − L∗(�)] =0  (1.16) 

For any solution x(�) there exist an initial solution �(0) = �� such that  

	�(0) = �� ∈ N. Where N	is the given set of initial conditions. 

A control function can be foundin either open loop(feed forward) control 

O(�) = P(�, �@) (1.17) 

Or in the form of state feedback 

O(�) = PH�(�)J (1.18) 

Or in output feedback 

O(�) = PHL(�)J  (1.19) 

inorder to ensure the equations (1.15) and (1.16). 

This is the method of tracking problem for control theory. The key 

feature of the control of chaotic systems is to achieve goals by means of 
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sufficiently small control. A special case of above mentioned case is 

stabilization of unstable equilibrium of the state �∗� where stabilization should 

satisfy the equation G(�∗�, 0) = 0.	Here additional restrictions such as small 

control solutions are used. This method even can be used for a simple 

pendulum, where nonlocal solutions of the stabilization problem with small 

control are nontrivial. The control laws also can be extended by introducing 

dynamic feedback described by differential or time-delayed models. 

1.5.2  Methods of control of the chaotic processes 

1.5.2a  OGY Method 

E. Ott, C. Grebogi and J. A. Yorke [33] were the first to make the key 

observation that the infinite number of unstable periodic orbits typically 

embedded in a chaotic attractor can be used for the purpose of achieving control 

by means of applying only very small perturbations. It is possible to get 

information about the chaotic system by analyzing a slice of the chaotic 

attractor. This slice is a Poincar�́ section. The information about the section has 

been gathered, then the system is allowed to run and wait until it comes near a 

desired periodic orbit. Later, the system is made to remain on that orbit by 

perturbing the appropriate parameter. When the control parameter is changed, 

the chaotic attractor is shifted and distorted. The new attractor helps the system 

to continue on the desired trajectory. This method does not require a detailed 

model of the chaotic system but only some information about the Poincaré 

section. 

1.5.2b  Pyragas method 

In this method[33], an appropriate continuous controlling signal is 

injected into the system, for stabilizing a periodic orbit. Its intensity is 
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practically taken as zero when the system evolves close to the desired periodic 

orbit. But intensity increases when it drifts away from the desired orbit. 

1.5.2c  Adaptive Track control method 

This method is a recursive design methodology for controller 

design[34]. It constructs associated Lyapunov functions and feedback control 

laws. The controller is selected such that it must adapt to a controlled system. 

The parameters may vary, or initially are uncertain. Its main purpose is to 

design the adaptive laws and virtual control functions to counteract the 

unknown nonlinearity of the system. 

1.6  Synchronization 

Synchronization of chaos may occur when two, or more, 

dissipative chaotic systems are coupled. Chaotic systems with positive 

Lyapunov Exponents resist synchronization phenomena. Synchronization 

occurs when the driving system loses its own dynamics and follows those of 

external force [4,35]. Quantitatively this can be measured by the largest 

Lyapunov Exponent: a negative exponent indicates synchronization. The 

stability of synchronization for coupled systems can be determined by master 

stability. 

1.6.1 Synchronization by periodic forcing 

In many systems chaos disappears if a periodic external force with 

sufficiently large amplitude is applied. Here synchronization means that 

periodic forced oscillations are observed instead of chaos. For very strong 

forces, dependence on the amplitude and frequency of the forcing does not 

follow any general rule. In the driven system the attractor is a limit cycle, so the 
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relation between driven and driving variables can be represented by a smooth 

function. 

For example for periodically driven Lorentz system, periodic regimes 

are observed only if the amplitude of forcing is larger than critical value of 

parameter. 

1.6.2  Synchronization by noisy forcing 

Synchronization by external noise means that the system forgets its own 

dynamics and its own initial conditions and it follows the driving noise. For a 

particular system where the synchronization transition is not seen, it can be 

observed if a replica of system is considered. If the two identical systems which 

are having different initial conditions but are driven with the same noise, the 

synchronization is set in[4,35]. For the positive Lyapunov Exponents, the 

system trajectories will follow their initial conditions and will remain different. 

But for negative exponents they forget their initial conditions and approach each 

other, ie synchronization occurs. 

Synchronization by common noise occurs without any direct interaction 

between the oscillators and is independent of number of oscillators. The same 

effect can be observed for any large ensemble of identical nonlinear systems 

driven by same noise. All systems will synchronize provided the Lyapunov 

Exponent is negative. 

1.6.3  Synchronization by chaotic forcing 

Complete synchronization, smooth and non- smooth Generalized 

synchronization, and Generalized synchronization by quasi periodic driving are 

examples of chaotic forcing. Complete synchronization via chaotic forcing is 

possible only when the system possesses a symmetry, so that a regime where all 
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variables of driven and driving systems are equal is possible. When the state of 

driven system is completely determined by the state of driving system, it is 

possible to use generalized synchronization[4]. If the driving force is described 

by a torus in phase space, then driving system can behave quasi periodically, 

then trajectories lies on a torus in enlarged phase space. This leads to strange 

nonchaotic attractor. It has negative largest Lyapunov Exponent but is fractal. 

1.6.3.1 Different types of chaos synchronization 

1.6. 3.1a Generalized Synchronization 

This type of synchronization is observed when the coupled systems are 

completely different. The driven (slave) and the driving (master) systems can be 

represented by a one to one mapping given by, 

L(�) = N(�(�)) (1.20) 

Here, the trajectory of attracter in one system given by �(�) transforms 

the trajectory of attracter in next system L(�)by the transformation N[36]. Thus, 

L(�)can be determined if the evolution of the drive system is known. Once the 

two systems get synchronized, the difference in trajectories, with respect to 

time, reduces to zero. i.e., 

lim
→�(�(�) − NH�(�)J = 0 (1.21) 

1.6.3.1b Complete Synchronization 

If the synchronization is displayed by coupled identical systems, then 

such synchronization is known as complete synchronization. Here, there is an 

equality of the state variables leading the synchronization. It is also known as 

identical or conventional synchronization[37]. Such systems show strong 
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coupling strength. This was the first recognized type and is the simplest one in 

chaotic synchronization provided with negative valued Lyapunov Exponents 

where the coupling is unidirectional. This is a special case of generalized 

synchronization where function N becomes unity. 

However, this is not the case with non-identical systems. Complete 

synchronization is not observed in such systems. Instead, phase synchronization 

and lag synchronization are observed in such systems. 

1.6.2.1c Phase Synchronization 

In phase synchronization, all the phases are locked while amplitudes are 

least affected and chaotic. This was first observed in the R1R/sler system and can 

be simulated by a very weak external force. If m, " are integers and	S, T 

represent the phases belonging to two different systems, then  

U ∗ S − " ∗ T = V  (1.22) 

where	V is a constant which represents phase synchronization relation between 

the two systems. This shows that, if either the phases change in the same way or 

if a constant ratio exists between the two, phase synchronization occurs. That 

means, perfect phase synchronization between two coupled oscillators will 

occur when the chaotic oscillators are phase coherent[4,36,37]. Phase 

synchronization finds application in neuroscience, laser technology etc.  

1.6.3.1d Lag Synchronization 

Phase synchronization is the weakest of all and it is achieved at very low 

coupling strengths. At larger values of coupling strengths, non identical systems 

may exhibit other types of synchronization also. An example for this is the lag 

synchronization. Lag synchronization lies intermediate to both phase 
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synchronization and complete synchronization. Here, both the phases and 

amplitudes are entrained but there is a time lag between the master and the 

slave. The two chaotic systems become indistinguishable in time, when shifted 

by a proper time lag. With a slight increase in the strength of coupling, 

complete synchronization can be achieved [4]. 

1.6.1.1.e Anti-Synchronization 

Anti-synchronization occurs when the state variables of the both the 

driving and driven systems are the same in magnitude but opposite in sign. The 

synchronization which was first observed by Huygens in pendulums was of this 

kind [35]. They are characterized by the disappearance of certain relevant state 

variables that evolve in time. In this case, the relation between the slave, L(�), 

and the master, �(�), is given by, 

L(�) = −�(�)  (1.23) 

Under anti-synchronization,  

lim
→�(�(�) − H−�(�)J = 0  (1.24) 

1.6.3.1f Hybrid Synchronization 

In hybrid synchronization of two chaotic oscillators, one part of the 

system is completely synchronized while the other part is anti- synchronized. 

Here, complete and anti-synchronization coexist in the process of 

synchronization [35]. 

1.7  Some Applications of Chaos 

Chaos theory has successfully explained various phenomena in the 

natural sciences. There has been rapid and successful application of chaos 
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theory to mechanical systems, electrical circuits, lasers, chemical reactions due 

to the recent theoretical prediction that chaotic physical systems might be 

controllable with small perturbations[38]. The application of chaos theory to the 

physical and chemical sciences has resolved many problems, such as how to 

calculate a turbulent event in fluid dynamics or how to quantify the pathway of 

a molecule during Brownian motion. 

Many unresolved problems are present in biology and medicine, such as 

how to predict the occurrence of lethal arrhythmias or epileptic seizures. In such 

cases, we can quantize the chaotic system, such as the nervous system, by 

calculating the correlation dimension of a sample of the data that the system 

generates. In chaos theory, the correlation dimension is a measure of the 

dimensionality of the space occupied by a set of random points, often referred to 

as a type of fractal dimension[38]. For biological systems, the point correlation 

dimension does not presume stationarity of the data. So it can track transient 

non-stationarities which occur when the system changes state. These types of 

non-stationarities arise during normal functioning (event related potential) or in 

pathology (epilepsy or cardiac arrhythmogenesis). The Point correlation 

dimension of a data can specify which patients will manifest sudden death [38].  

Chaotic systems are deterministic. Hence there is greater sensitivity and 

specificity of the dimensional measures. It can be used for quantifying the time 

series. This accuracy in quantifying time series appears to be significant in 

detecting pathology in biological systems. Also the use of deterministic 

measures lead to breakthroughs in the diagnosis and treatment of some medical 

disorders. Chaos and its concepts are recently applied to psychology by 

researchers from the perspective of cognitive, developmental and clinical 

psychology[38]. 
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Chapter 2 

Neurons and Neuronal Dynamics 

Experimental and theoretical approaches of neuron dynamics for 

understanding the brain and its behaviour is an interesting research area. There 

are as many as 1011 neurons in the human brain, and each can have more than 

10, 000 synaptic connections with other neurons. The applications of nonlinear 

dynamics to the study of brain activity began to flourish in the 1990s. Neuronal 

dynamics is fundamental for all aspects of mental activities such as perception, 

cognition and emotion since the main features of brain activity is always 

associated with the continuous change of the underlying brain states(even in a 

constant environment).  

2.1  Elements of a Neuron 

Neurons are the elementary processing units in the central nervous 

system, which are connected to each other in an intricate pattern. The ability to 

perceive surroundings – to see, hear, and smell what’s around – depends on 

nervous system. The nervous system triggers involuntary responses. For 

example, increase in heart rate and blood flow to muscles, cope with danger etc. 

All of these processes depend on the interconnected cells. 

The brain is made up of many types of cells, including neurons, 

neuroglia and Schwann cells[39]. The latter two types make up almost one half 

of brains volume, but neurons are key elements in signal processing. Neurons 

generate electrical signals called action potentials, which is quickly transmit 

information over long distances. Glia cells are also essential to nervous system 

functions, but they work mostly as supporting the neurons. They are required 

for energy supply and structural stabilization of brain tissue. 
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The ideal spiking neurons (Figure 2.1) have three distinct parts namely 

dendrites, soma, and axon. Dendrites play the role of input devices and collect 

signals from other neurons and transmit them to soma. The ‘central processing 

unit’ soma performs important non-linear processing step. If the total input to 

soma exceeds a threshold value, corresponding output signal is generated. The 

output signal is taken over by the axon which delivers the signal to other 

neurons. 

 

Figure 2.1: Ideal spiking neurons[adapted from elements of neuronal systems 
[39]] 

 

A typical neuron receives inputs from other neurons and sends a signal 

(presynaptic cell) across a synapse which is received by another neuron (the 

postsynaptic cell). The electrical transmembrane currents produced by inputs 

change the membrane potential of the neuron. The change in synaptic currents 

produce postsynaptic potentials (PSPs)[40]. Small currents result in small PSP 
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s. The larger currents can produce postsynaptic potentials which can be 

amplified by voltage gated channels and cause the initiation of action potentials. 

 

Figure 2.2: Basic structure of neuron (adapted from Neurons Boundless 
Psychology-Lumen Learning [courses lumenlearning.com]) 

 

A single neuron in vertebrate cortex often connects to more 

than 104 postsynaptic neurons. Many of its axonal branches end in the direct 

neighborhood of the neuron, here the axon can also stretch over several 

centimeters. So abrupt and transient changes of membrane voltage propagate to 

reach neurons in other areas of the brain. 

2.2 Neuron as dynamical system 

The coordination between brain and different organs is made possible 

with the help of neurons through electrical impulses. This means, every time an 
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input stimulus is given to a living body, brain initiates a propagating change in 

the membrane potential that essentially brings out the response to the stimuli. 

2.2.1.  Ionic mechanisms 

Action potentials play an important role among the many mechanisms 

for communication between neurons. They are abrupt changes in the electrical 

potential across a cell’s membrane and can propagate in essentially constant 

shape away from the cell body along axons. 

Action potentials can be sustained by ionic currents through the cell 

membrane. The ions most involved are Sodium (Na+), Calcium (Ca++) and 

Potassium(K+). In the simplest case, an increase in the membrane potential 

activates (opens) Na+ and/or Ca++ channels, resulting in rapid inflow of the 

ions which further increases in the membrane potential[41,42]. Here positive 

feedback leads to sudden and abrupt growth of the potential. This triggers a 

relatively slower process of inactivation (closing) of the channels and/or 

activation of K+ channels. It leads to increased K+ current and it eventually 

reduces the membrane potential. These simplified positive and negative 

feedback mechanisms are responsible for the generation of action 

potentials[43]. There are more than a dozen of various ionic currents having 

diverse activation and inactivation dynamics and occurring on disparate time. 

Any combination of them would result in interesting nonlinear behaviour such 

as neural excitability. 
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Figure 2.3: Impulse transmission among nervous system[adapted from[43]] 

The inside of a neuron cell is approximately 70 millivolts more than that 

of outside(-70 mv). This can vary by neuron type and by species. The following 

Figure 2.4 shows the resting membrane potential, depolarization and 

hyperpolarization mechanisms in neurons. 
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Figure 2.4: Mechanisms of Resting potential, depolarization and 
hyperpolarization among nervous system (Adapted from[43]) 
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2.2.2  Dynamical mechanisms  

A neuron is quiescent if its membrane potential is at rest or exhibits 

small amplitude(sub threshold) oscillations. In dynamical point of view this 

corresponds to the system residing at equilibrium or to a small amplitude limit 

cycle attractor. All the inward current causing depolarization will be balanced 

by the hyperpolarizing outward currents. If the neurons remain quiescent in 

spite of all the small perturbations, we can conclude that the equilibrium point is 

stable. A neuron is said to be excitable if a small perturbation away from a 

quiescent state can result in a large excursion of its potential before returning to 

quiescence. Here large excursions exist because the quiescent state is near a 

bifurcation.  

2.2.2.1 Periodic spiking 

Neurocomputational properties of cell depend on bifurcations of large 

amplitude limit cycles which corresponds to periodic spiking. This differs from 

bifurcations of quiescent states. When limit cycle is about to disappear or if it 

loses stability through subcritical flip bifurcations, there is a coexistence with 

stable quiescent state[44]. So weak perturbation having appropriate timing can 

shut down periodic spiking prematurely. 

• Tonic and phasic spiking 

Tonically spiking cells fire continuous trains of action potentials for the 

duration of the depolarizing pulse of injected current[Figure 2.5(A)]. While 

phasically spiking cells respond to a sustained depolarizing current pulse with a 

very brief train of action potentials followed by no further firing[Figure 2.5(B)]. 
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Figure 2.5: Various spiking and bursting patterns in response to a sustained 
depolarizing pulse(adapted from[45]). 

2.2.2.2 Bursting 

When neuron activity alternates between a quiescent state and repetitive 

spiking, it is termed as bursting. It is usually caused by a slow voltage or 

calcium dependent processes that can modulate fast spiking activity[44,45]. 

There are mainly two important bifurcations associated with bursting such as 

bifurcation of quiescent state that leads to repetitive spiking and bifurcation of a 

spiking attractor that leads to quiescence. 

Sometimes neurons use rapid clusters of two or more action potentials, 

called bursts, as basic signaling events instead of simple spikes. Examples of 

tonic bursting and phasic bursting are shown in Figure 2.5(C) and Figure 

2.5(D). 

Some of the other commonly occurring firing patterns are shown in Figure 2.6 

• Regular spiking (RS)  

It is a tonic spiking with possible adapting frequency that present a 

stationary firing rate in response to a sustained depolarizing pulse[45]. This 

firing pattern is the most spread among excitatory neurons. 
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• Intrinsically bursting (IB)  

Here neurons respond with bursts of action potential at the beginning of 

a strong depolarizing injection, followed by tonic spiking. 

• Chattering (CH)  

This corresponds to high frequency bursts with a relatively short 

interburst period. This behavior has mainly been observed in layer III Purkinje 

cell. 

• Fast spiking (FS)  

It is a high frequency tonic spiking with little adaptation, observed in 

inhibitory cells. Fast spiking cells exhibits irregular spiking when injected with 

weak current. 

 

Figure 2.6: Firing patterns of regular spiking, Intrinsically bursting, Chattering 
and Fast spiking(adapted from[38]) 

 

2.2.2.3 Neuronal Excitability 

Neuronal excitabilities behave as the basic dynamics related to the 

transitions between firing and resting states. These types of neuronal electronic 

activities play important roles for achieving biological functions of nervous 

systems such as information encoding, transmission and processing. In 1948, 
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Hodgkin[46] distinguished different firing frequency responses of resting state 

to external constant depolarization current simulations. 

 

Figure 2.7: Neural excitability, periodic spiking and bursting (adapted from 
[38]). 

 

There are different excitabilities according to the frequency of emerging 

firing. If the action potentials are generated with arbitrarily low frequency      

(5Hz-150 Hz), it is termed as Class 1 neural excitability. Here frequency 

increases with increase of current[47]. For Class 2 neural excitability the action 

potentials generated in a certain frequency band that is relatively insensitive to 

changes in the strength of applied current. Here firing frequency switches from 

0 to a nearly fixed value (75 Hz-150 Hz). 
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Figure 2.8: Transition from rest to repetitive spiking in Morris-Lecar and 
Hodgkin-Huxley models when the strength of applied current increases[47]. 

 

Class 1 and Class 2 neurons can also exhibit different phase and 

frequency responses, different coefficient of variations, or different histograms 

of interspike intervals to noise etc. Neuronal excitabilities can affect 

spatiotemporal behaviour of the nervous system. Pyramid neurons in 

hippocampus exhibits Class 1 excitability. Interneurons in the neocortical and 

entorhinal cortex manifest the excitability of Class 2. 

Class 1 excitability corresponds to a resting state (stable equilibrium) 

changed to firing (limitcycle) through saddle node bifurcation as the 

depolarization current increases. The classes of spiking corresponding to 

bifurcations of the limit cycle combined with the classes of excitability help for 

understanding the dynamics of transitions between resting and firing states[48]. 
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A fundamental property of the neurons is excitability illustrated in 

Figure 2.6. Small perturbation results in small departures from the equilibrium. 

It is denoted as postsynaptic potential. Larger perturbations are amplified by the 

neuron’s intrinsic dynamics and cause initiation of the spike response. If a 

sufficiently strong current injected into the neuron, it will bring to a pace 

making mode and hence exhibits periodic spiking activity[38]. 

 

Figure 2.9: Resting, excitable, and periodic spiking activity corresponds to a 
stable equilibrium (a and b) or limit cycle (c), respectively (adapted from [39]). 

 

The neuron can sustain quiescent state despite small disturbances and 

membrane noise. Then the corresponding equilibrium is termed as stable. The 

study of the phase portrait gives the overall qualitative description of dynamics. 

It depicts certain special trajectories (equilibriums, separatrices, limit cycles) 

which determine the topological behaviour of all the other trajectories in the 

phase space. In order to understand the dynamic mechanism such amplification, 

it is needed to consider the geometry of the phase portrait near the resting 

equilibrium. This is the region where the decision to fire or not to fire is made. 
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If the state of a neuron is given by a stable limit cycle in phase space. 

The corresponding phase space trajectory represents a stable periodic orbit. The 

electrophysiological details of the neuron helps to determine only the location, 

the shape, and the period of the limit cycle. The neuron can have periodic 

spiking activity as long as the limit cycle exists.  

2.2.2.4 Bifurcations in neuron dynamics 

Suppose, the control parameter is the current which is being injected to 

the neuron and its strength can be varied. Initially the neuron is at quiescence 

and as the strength of current is varied, the neuron exhibits tonic spiking (phase 

portrait corresponds to a limit cycle). So, there is some intermediate value of the 

injected current where this transition takes place. This transition corresponds to 

the bifurcation of the neuron dynamics (a qualitative change in the phase 

portrait). Neurons are excitable because they are near bifurcations from resting 

to spiking activity. So the type of the bifurcation determines the excitable 

properties of the neuron. The bifurcations of an equilibrium state leading to the 

transition from resting to periodic spiking behaviour in neurons. There are 

various types of Bifurcations, namely, Saddle-node bifurcation, Subcritical 

Andronov-Hopf bifurcation, Supercritical Andronov-Hopf bifurcation [49]. 
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Figure 2.10: Saddle node bifurcation. (a) Stable and unstable solutions as a 
function of external current (b) Oscillations begin with arbitrarily low frequency 
(adapted from [41]) 

 

 

Figure 2.11: Hopf bifurcation. (a) Stable fixed point loses stability at 
supercritical hopf bifurcation point (b) Oscillations begin with frequency that is 
bounded from below but not equal to zero (adapted from [49]). 
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Figure 2.12: Subcritical Hopf bifurcation. (a) A single Stable fixed point loses 
stability at subcritical Hopf bifurcation point and branches of unstable periodic 
solutions are resulted. There is a region of bistability between ISNPO<I ext<IHope 

(adapted from [49]) 

2.3 Neurons in brain 

The neurons in the human nervous system can be divided into different 

classes; sensory neurons, motor neurons, interneurons and neurons in brain etc. 

Sensory neurons get information about what is going on inside and outside of 

the body and bring that information into central nervous system. Motor neurons 

get information from other neurons and convey commands to muscles, organs 

etc[50]. Interneurons connect one neuron to another and are found only in 

central nervous systems. In the brain, the distinction between the types of 

neurons is much more complex. Some of the brain neurons are involved in 

sensory processing like those in visual or auditory cortex and others are 

involved in motor processing – like those in the cerebellum or motor cortex. 

There are tens or hundreds of different neurons inside the sensory or motor 

regions. Researchers are trying to find out a way to classify the huge variety of 

neurons in the brain. 
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Mostly it is very difficult to define a neuron type. Neuron classification 

can be done depending on the type of neurotransmitter that a neuron uses. Some 

GABA neurons[42], for example, send their axon mostly to the cell bodies of 

other neurons; others prefer to target the dendrites. Each neurons show distinct 

behaviours in response to its electrical properties, shapes, genes expressed, 

projection patterns and receive different inputs. A single neuron model perform 

same function or suite of functions in the brain. 

Researches[50] showed that neurons are discrete cells acting as 

metabolically distinct units communicating via specialized circuits and 

junctions. The main electrophysiological features of the neurons were obtained 

by the pioneering works of Hodgkin and Huxley[46]. Substantial early 

knowledge of neuron electrical activity came from experiments on the squid's 

giant axons [46]. As they are much larger than human neurons, but similar in 

nature, it was easier to study them with the technology of the first half of the 

twentieth century. This poor squid suffered pressure, stretch, injections of 

chemical substances and electrocutions, to record its axon's electrical activity by 

inserting electrodes into it. The accurate measurements obtained opened the 

way to the current neural science theory. 

2.3.1  Dynamical and structural basis of brain activity 

Brain research is one of the most important objectives of neuroscience 

which helps to understand the neuronal and cortical mechanisms underlying 

perceptual and cognitive functions. First influential brain theories such as 

localizationism [51] postulates that the brain is functionally segregated ie, the 

parts of the brain perform specific functions. This theory was motivated by 

Franz Joseph Gall’s theory of phrenology [51]. It is observed that specific 

regions in animals and humans is associated with particular brain functions and 

it led to the establishment of concept of functional segregation by the end of 
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nineteenth century. Functional brain imaging (eg. functional magnetic 

resonance imaging fMRI) confirmed that specific functions activate particular 

regions of brain. While many fMRI, human electroencephalography (EEG) and 

magneto encephalography (MEG) as well as animal cell recording studies put 

forward the idea that neuronal computations are distributed and engage a 

network of distributed brain areas[51]. This concept leads to the idea of 

functional integration. Perceptions, memories, and even emotions can be 

represented in a distributed manner. Functional connectivity is the statistical 

dependence on remote neurophysiologic events and can be assessed with simple 

coherence analysis of fMRI or electrophysiological time series[51]. Effective 

connectivity is defined as the influence of one system over another. Hence it can 

be concluded that global network dynamics over distributed brain areas can 

emerge from the local dynamics of each brain area. Conversely, global 

dynamics also can constrain local activity such that the whole system becomes 

self-organized. The implicit coupling between local and global scales induces a 

form of circular causality that characterize coupled complex self-organized 

system, like brain (e.g: Dynamics of neuronal populations within cortical areas 

are enslaved by large scale intercortical dynamics[49]). 

2.3.1.1 Attractors and brain dynamics 

Computational neuroscience tries to describe the dynamics of networks 

of neurons and synapses with realistic models. These models help to reproduce 

emergent properties in neurophysiology (Single and multiple cell recording, 

local field potentials, optical imaging, EEG, MEG, fMRI) and associated 

behaviour. The theoretical frame work, the attractor theory [49] helps to capture 

the neural computations inherent in cognitive functions. This theoretical frame 

work based on mathematical models is formulated at the level of neuronal 

spiking and synaptic activity. 
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Generally there are two main modeling approaches; bottom-up and top-

down models. Bottom-up dynamical models start from a description of 

individual neurons and their synaptic connections. Using anatomical and 

physiological data, the particular pattern of connectivity in a circuit is 

reconstructed, taking into account the strength and polarity (excitatory or 

inhibitory) of the synaptic action. Synapses releasing a neurotransmitter brings 

the membrane potential of the postsynaptic neuron toward the threshold and the 

corresponding action potentials generated are said to be excitatory. Inhibitory 

synapses drive the membrane potential of postsynaptic neuron away from 

threshold and generate action potentials. Top-down dynamical models start with 

the analysis of those aspects of an animal’s behaviour that are robust, 

reproducible and important for survival. Building such large-scale models is to 

determine the type of stimuli that elicit specific behaviours; this knowledge is 

then used to construct hypotheses about the dynamical principles that might be 

responsible for their organization. 

For example local neuronal network model of integrate and fire [50] 

enables the study of spiking activity of single neuron and the effect of 

pharmacological agents on synaptic currents which is observed through fMRI 

and neurophysiological findings. Spike arriving at a given synapse provides 

input to the neuron which induces postsynaptic excitatory and inhibitory 

potentials.  

Structural connectivity of the Macaque and the human cortex can be 

cited as an example for global network [51]. Here extrinsic connections between 

different cortical areas are specified by neuroanatomic matrix. These 

connections between a two distinct brain areas can be described by the density 

of synaptic connections between neurons in that area. Weight of inter areal 

connections is described by the coupling strength specified in the matrix. In 
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Macaque case, neuro anatomic matrix is obtained from CoCoMac database [49]. 

The connectivity of 40 cortical areas in one hemisphere of Macaque brain is 

obtained from the data base. In human case neuro anatomic information is 

obtained from diffusion weighted tensor imaging (DTI) and diffusion spectrum 

imaging (DSI) taractography [48]. 

2.4 Biological Neuron Models 

Building dynamical models to study the neural basis of behaviour is one 

of the important issues in computational neuroscience. Specialized neurons 

transform environmental stimuli into neural code. This encoded information 

travels along specific pathways to the brain or central nervous system and 

combined with other information. 

A biological neuronmodel represents the electrical properties of 

neuronal action potentials. The action potentials cause changes in electrical 

potential across cell membrane. It lasts for about one millisecond. Spiking 

neurons are the major signaling unit of the nervous system. It is observed that 

all cells of the nervous system do not produce the same types of spike. Cochlear 

hair cells, retinal receptor cells and retinal bipolar cells are some examples of 

cells which do not spike. Many artificial neuron models were proposed to model 

neurons in the nervous system to express the ion flows through the surface of 

membrane, to examine exactly how brain works and simulate the activities of 

the brain. 

In 1943, the first neuron model[52] was proposed by McCullach and 

Pitts. Later the most successful and widely used neuron model, the Hodgkin-

Huxley model is developed (1952) [46]. The ionic mechanism and electrical 

current on membrane surface were discussed in this model. After that, the 

FitzHugh–Nagumo neuron model, the simplified type of the Hodgkin– Huxley 
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neuron model, was proposed. In 1972, Nagumo and Sato [57] defined a neuron 

model and the weakly coupled Wilson–Cowan neuron model was defined in the 

same year. The Moris–Lecar neuron model was proposed in 1981 is a 

conductance based neuron model [49]. Later Hindmarsh–Rose(1984) [50] and 

Izhikevich (2003) [51] neuron models were also proposed. The studies based on 

the behaviour of the collective neurons rather than that of an individual neuron 

were proposed later. Since the biological information process and production of 

regular rhythmic activity are always related with the cooperative behaviour of 

neurons [48]. 

It is difficult to identify the interactions of the collective neurons in the 

living body except for some applications. Several alternative system approaches 

such as numerical modeling [52] and hardware implementations, which help to 

observe the fire patterns or synchronizations of neurons, have become crucial 

[53]. Hardware realizations are able to emulate the behaviour of an individual 

biological neuron or coupled neurons with real time adaptability. Furthermore, 

hardware realizations of neuron models can be used in practical applications 

such as bio-inspired robotic systems and CPGs (Central Pattern Generators) 

[53]. The software examinations of the biological neuron models can simulate 

the behaviour of the neurons[54]. Nowadays, Hindmarsh–Rose neuron model 

(H-R), which exhibits several fire patterns of the neuron are widely used in 

synchronization studies, due to their programmable and reconfigurable features. 

2.4.1  Some commonly used neuron models 

2.4.1.1 Hodgkin - Huxley Model 

In 1952, Alan Hodgkin and Andrew Huxley was the first to study the 

bifurcation behaviour of the neuron. They developed a model system[46] 

quantifying the features of the giant squid axon, in Cambridge which 
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revolutionized the field of cellular biophysics. This eminent discovery was 

honoured with nobel prize in 1963.  

This model gives an empirical kinetic description of ionic mechanisms 

in a neuron. It is based on Sodium, Potassium and leakage ion flow. An 

electrode is assumed to be inserted within the giant axon such that it has same 

potential that of intracellular component of the neuron (axoplasm)[55]. Another 

electrode is placed in the extracellular fluid (at zero volts). This set up thus 

measures the membrane potential as the difference in potential is determined 

with the help of an amplifier. This is then connected to a voltage clamp 

comparator along with a desired voltage (or command voltage), say Vc, which is 

set by the experimenter. As long as there is a difference signal given by                 

(Vm -Vc), generated by the amplifier, there is a current flowing into the axon 

through a current passing electrode and this will try to make both the potentials 

same. This injected current can be measured which essentially states that, 

corresponding to any change in the voltage across the membrane, ion channels 

open and close resulting in the flow of current. The current generated by those 

voltage gated ion channels are recordable.  
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Figure 2.13: Time series of the membrane potential in the neuron(adapted 
from[45]). 

 

The variation in the membrane potential leads to a change in the current 

through the ion channels. In the Figure 2.13, the resting potential is at -65 mV. 

When it is switched to 20 mV, there is a change in the charge separation and 

hence capacitive current flows. The capacitive current which is actually caused 

by the change in environment will have a sign opposite to the voltage 

perturbation applied and Once the new potential is reached, there is no more 

capacitive current [56]. Current flows so as to push the membrane potential 

back to the resting potential. Different ion channels open and close and a rapid 

inward and a delayed outward current are observed. This is because 

depolarization causes the transport of sodium ions. This inward current is 

known as sodium current. It is inactivated as time goes. The delayed outward 

current is caused by the Potassium ions and they don’t show any decrease or 

inactivation in axons. The current flow is greater for depolarization than that for 

hyper polarization [56]. 
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Figure 2.14: Equivalent circuit representation for the Hodgkin-Huxley model 
(adapted from [45]). 

 

The nonlinear differential equations representing Hodgkin-Huxley 

model (H-H model) is as follows 

−� ���� = ��ℎ
̅�
�� − ������ + ��
̅��� − ����� + 
̅��� − ����� − � 

��
�� = ���1 − �� −  �� 

��
�� = �!�1 − �� −  !� 

"#
"$ = �#�1 − ℎ� −  #ℎ   (2.1) 
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C represents the membrane capacity, V the total membrane potential, �
 

the sodium activation variable and h the Potassium activation variable. 

	
&�
	'(	the maximum sodium conductance and 
̅�is the maximum Potassium 

conductance. ���� represents the Potassium equilibrium potential, 
̅� 
maximum leakage conductance and ����

 
represents the leakage equilibrium 

potential. I gives the external current, �) represents gate inactivation rate 

(' = �, �, ℎ), and  ) gives the gate activation rate (' = �, �, ℎ). 

2.4.1.2 Fitzhugh – Nagumo Model 

The Hodgkin–Huxley (H-H) model[46] of the nerve impulse made up of 

four coupled nonlinear differential equations. Because of the complexity of the 

equations, it is difficult to use them in simulations of interactions in small 

neural networks. Hodgkin-Huxley model can mimic all the behaviours of 

neuron spiking. But due to its high dimensionality it is difficult to achieve 

analytical solutions. Only numerical solution can be found for each specific 

conditions. Thus second-order differential equation of the model which can 

predict the main properties such as the frequency–current relationship.  

Fitzhugh[52] introduced a second-order model of the nerve impulse. It 

helps for the prediction of an action potential duration. The dynamics of the 

slow sodium and potassium ions in H-H model i.e., the gating variables: �	and 

ℎare replaced by an effective current +��� in Fitzhugh – Nagumo(FHN) 

model[57]. The fast dynamics of sodium ion across the neurons in H-H model is 

replaced by	,��� [59]. 

 The FHN model is expressed as, 

�,
�� = , − 1

3,
� − + + �./$ 
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"0
"$ = 1�, + � − 2+�  (2.2) 

where, ,	is the rate of change of the neuron membrane potential from its 

equilibrium due to the fast ion dynamics with time. +	is the recovery variable 

for the neuron membrane potential which deals with slow diffusive ion currents 

in the neuron. These two variables represent the state of the system at any 

instant. The equation for the recovery variable shows that, it depends on the 

departure of the membrane potential from its equilibrium value	, , and it decays 

at a constant rate ‘2’. Iext is the external stimulus or the external current given to 

the neuron. �, 2	and	1	are constants, where typically 0 < � < 1, 1 > 0, 2 > 0. 

Parameters can be chosen as	� = 0.7, 2 = 0.8	, 1 = 0.08. 

With	1 > 0 , the origin in the system is an unstable fixed point 

surrounded by a globally stable limit cycle. It is the only parameter that can 

change the behaviour of the neuron around the threshold. Also, decreasing 1 

decreases spike rise and fall times. Finally, the behaviour around and below 

threshold is influenced by	1. For certain parameter values, the solution 

demonstrates a slow collection and fast release of the potential. This kind of 

behaviour is often labeled as ‘integrate and fire’. However, in biological 

systems, a resting phase is required for the neurons after firing. Tonic spiking 

with FHN can be generated withs appropriate parameter values. 

2.4.1.3 Hindmarsh-Rose Model 

FitzHugh-Nagumo model is the simplification of the Hodgkin-Huxley 

model for neurons. It came with many drawbacks. The FHN model reduced the 

complexity of the neuron models. Self-sustained chaotic dynamics was not 

observed with FHN model. The most essential characteristics of neurons such 

as bursting could not be observed. FHN model consists of only a few 

parameters. It is difficult to adapt this model to neurons with specific properties. 
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The problem with FHN model is that those equations do not provide a very 

realistic description of the rapid firing of the neuron [57]. They do not give a 

reasonable frequency–current relationship. The FHN model, which is the 

simplified version of H-H model, with only two dimensions was introduced so 

that its global behaviour can be easily studied in a phase plane. However, this 

model could explain only the generation and propagation of action potentials 

with only the Sodium and Potassium channels. Elucidation of the rhythm of 

spike train seems to be difficult with FHN model. More channels with slower 

kinetics have to be introduced to understand more about the underlying 

mechanisms. Hence, the FHN model was modified to give the Hindmarsh-Rose 

model which is a three dimensional model for neuron with rapid firing. In 

particular, it shows bursting behaviour and chaos. 

The Hindmarsh-Rose (H-R) model for neurons was developed by J. L. 

Hindmarsh and R. M. Rose to allow for rapid firing or bursting in neurons. The 

Hindmarsh-Rose neuron model is a simplified model of the Hodgkin-Huxley 

model and a modification of the FitzHugh-Nagumo model [57]. The 

Hindmarsh-Rose model differs in many ways from FitzHugh-Nagumo model in 

terms of topology of the phase space, the threshold for spikes, the way the spike 

trains are created and how bursting is shut off [14]. 

H-R model of neuronal activity is used to study the spiking-bursting 

behaviour of the membrane potential. A chain of action potentials emitted by a 

single neuron is called a spike train; a sequence of stereotyped events which 

occur at regular or irregular intervals [58]. The bursting behaviour of the 

neurons, characterized by the transition of a neuron from resting phase to a 

recurring firing state, relies on the slow adaptation variable	9��� [58]. This 

means that the adaptation variable was added to the existing model to terminate 

the firing. Each burst will have a definite number of spikes unless they are in 
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the chaotic regime. This model is based on the global behaviour of the neuron. 

Despite being simpler with less governing equations and coefficients, the model 

is accurate to neurons seen in biology and was created to accurately follow the 

bursting seen in mollusks [58]. The membrane potential is represented by the 

variable, :���. It is written in dimensionless units. There are two more 

variables, ;��� and 9��� which denotes the transport of ions across the 

membrane through the ion channels. Thus, at any instant, the state of the system 

is represented by these time dependent state variables. The transport of 

sodium and potassium ions is made through fast ion channels and its rate is 

measured by	;���, which is called the spiking variable. The transport of other 

ions is made through slow channels represented by 9��� which is called the 

bursting variable (slow adaptation variable).  

The Hindmarsh–Rose model has the mathematical form of a system of 

three nonlinear ordinary differential equations used to represent pulse 

propagation in neurons 

:< = ; − �:� + 2:= − 9 + �./$ 

;< = > − �:= − ; 

9< = ?�(�: − :.� − 9 (2.3) 

Here, :���represents the membrane potential and it considered as a natural 

output of the cell. Also ;���and 9���are recovery and adaptation variables, 

which account for fast and slow ion currents respectively. �./$ represents the 

external stimuli or the applied current. We choose the parameters as � = 1,  
2 = 3, > = 1, � = 5, ? = 0.005	, ( = 4, :. = − B

C so that the rich phenomena 

like bursting and spiking are observed. 
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The responses of this model to a current, largely depends on the values 

of µ and b. The parameter ‘µ’ controls the speed of variation of the slow 

variable z(t). This helps to analyse how efficiently the slow variables are 

exchanging the ions. It is not possible by the FitzHugh-Nagumo model. In the 

presence of spiking and bursting behaviour, it can determine the spiking 

frequency and the number of spikes per burst. Here :.  
sets the resting potential 

of the system. The parameter ‘b’ allows one to switch between bursting and 

spiking behaviour of the neutrons and thus affects the qualitative behaviour of 

the neurons. The model could successfully display regular bursting, chaotic 

bursting and post inhibitory rebound. Generally speaking, three modes of 

operation can be distinguished in the full Hindmarsh- Rose model:  

1.  Quiescent   

2.  Spiking   

3.  Bursting  

The quiescent mode corresponds to the absence of stable cycles. Spiking 

means the continuous generation of action potential, either regular or irregular 

but with no clear formation of packets of spikes. Bursting on the contrary means 

that action potentials arrive in clear bursts, separated by clear, regular or 

irregular silent periods. These can be illustrated using the figure below. 
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Figure 2.15: Different modes of operation in Hindmarsh- Rose model (adapted 
from [56]). 

2.4.1.4 Neuron model with Josephson Junction 

Josephson Junctions are two superconductors separated by thin 

insulating barrier. Here phase difference of electron across the barrier controls 

the electrical properties including voltage and current across the junction. 

Voltage developed above critical current is 

� = DEF=GH
"E
"$	  

where 	1I = #
.  (2.4) 

Current through the circuit can be represented as 

' = 1J + Γ1< + ('�1  (2.5) 
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Where Γ is a damping parameter which depends on resistance and capacitance. 

The superconducting circuits containing Josephson Junctions can model 

many characteristics of biologically realistic models such as action potentials, 

firing threshold and refractory periods. 

Basic circuit of JJ neuron (Figure 2.14) involves two Josephson 

Junctions connected in a loop. The individual junctions behave like ion 

channels. One corresponds to depolarizing current such as Sodium(Na+) and 

other to a hyperpolarizing Potassium(K+) current[59]. It is possible for the 

enhancement of model by inclusion of a third junction. It could allow for 

behaviours such as bursting that require at least three currents.  

The JJ neuron uses rapid single flux quantum technology. Here single 

chip can model up to N=10000 neurons. Here simulated action potential lasts 

about 50 ps. 

 

Figure 2.16: Circuit diagram of JJ neuron connected to a model chemical 
synapse (adapted from [54]). Many synapses could connect to a single JJ 
Neuron.  
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Table 2.1: Biological equivalents of the JJ model 

JJ- Neuron Biological equivalent 

Flux L = M�LN + LO� Membrane Potential 

Pulse voltage ,N Na+ current��
 

Control Voltage ,O K+ current �� 

Input current �)� Synapse current ,�PQ� 

 

The dimensionless model of resistive–capacitive–inductive-shunted 

Josephson Junctioncan be described by  

:R<  = R
ST U� − 
�:R�:R − sin�:=� − :�Y 

:=< =:R 
:�< = R

SZ(:R − :�� (2.6) 

The	
�:R� denotes the correlation between voltage and current of 

Josephson Junction. 


�:� = [ 0.366	:R < 2.9
0.0661:	R 					≥ 2.9̀   (2.7)  

The voltage, phase difference and induction current of Josephson 

Junction are represented by :R< , :=<  and	:�<  
respectively. I is the external forcing 

DC current and the constants  O and  � are the mapped parameters from the 

circuit equation. 
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2.5  Noise in neurons 

Neuronal noise designates random influences on the transmembrane 

voltage of single neurons. It can influence the transmission and integration of 

signals from other neurons and can alter the firing activity of neurons in 

isolation. Highly nonlinear operations can be performed by neurons. These 

operations involve high gain amplifications and feedback. Hence small 

biochemical and electrochemical fluctuations [61] can change whole cell 

responses. If the membrane potential is near the firing threshold, then the 

corresponding action potential is highly sensitive to noise[62].  

It is possible to detect and transmit weak periodic signals with threshold 

systems. This can be enhanced by presence of certain noise[63]. This process of 

enhancing certain level of noise is known as stochastic resonance. There are 

various sources of noise in neurons. Noise accumulates on each neuron due to 

randomness in the cellular machinery. At the biochemical and biophysical level 

there are so many stochastic processes in neurons. Some of the sources of noise 

in neurons are mainly due to protein production, degradation, opening and 

closing of ion channels, fusing of synaptic vesicles, diffusion and binding of 

signaling molecules to receptors etc [64]. 

 Large part of the noise experienced by a cortical neuron is mainly due 

to the intensive and random excitation of synaptic sites. It has been observed 

from in vivo recordings of cortical neurons in awake [65] and anesthetized 

animals that a spontaneous activity exists and that the related spike process can 

be considered as Poisson. The origin of irregularities is still poorly known. 

Gerstner and Kistler [66] had shown that we can distinguish between intrinsic 

noise sources that generate stochastic behaviour at the level of the neuronal 

dynamics and extrinsic sources arising from network effects and synaptic 

transmission. 
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A permanent noise source is the thermal noise linked with discrete 

nature of electric charge carriers. Fluctuations linked with this phenomenon are 

however of minor importance compared to other noise sources in neurons. The 

finite number of ion channels is another noise source. Most of the ion channels 

have only two states: they are open or closed. The electrical conductivity of a 

patch of membrane is proportional to the number of open ion channels. The 

conductivity therefore fluctuates and so does the potential. Noise is also due to 

signal transmission and network effects (extrinsic noise). Typical examples are 

synaptic transmission failures and randomness of excitatory and inhibitory 

connections. The global networks effects where there is random excitatory or 

inhibitory connectivity can produce highly irregular spikes trains even in the 

absence of noise.  

2.5.1  White Gaussian Noise 

White noise is a random signal with equal intensity at different 

frequencies. It has uniform power distribution across the frequency band for the 

information system. In discrete time white noise is a discrete signal whose 

samples are regarded as uncorrelated random variables with zero mean and 

finite variance. 

If each sample follows a normal distribution with zero mean, then the 

signal is said to be additive white Gaussian noise. Additive white Gaussian 

noise[67] is used in information theory in order to mimic the effect of many 

random processes in nature. The Gaussian noise follows a normal distribution. 

The idea of white noise refers that it has uniform power across the 

frequency band for information system. Gaussian white noise is a stationary and 

ergodic random processes. It follows a normal distribution in the time domain 

with average time domain value of zero. 
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The generalized correlation function of white noise can be represented as 

a��� = b=c��� (2.8) 

Where b= is a positive constant and c��� is the delta function. 

White noise is applied in describing random disturbances with small 

correlation period. It can be represented in spectral decomposition as 

a��� = d e)f$gh
ih �9�M�   (2.9) 

The elementary vibrations e)f$�9�M�, on an average, follows same 

intensity at all frequencies	M. 

The average squared amplitude is   

�|�9�M�|= = kl
=G�M	 − ∞ < M < ∞  (2.10) 

In practical application white noise follows the form 

a��� = ∑ c�� − op�p         (2.11) 

Here k varies between −∞ and +∞ and oiR, oI, oR, …….	form a Poisson 

process. a��� also can be represented as generalized derivative of Poisson 

processes	r��� 

s��� = d +��, (�a�(��( =gh
ih d +��, (��r�(� =gh

ih ∑ +��,p op� (2.12) 

Corresponding average value of squared amplitude is 

�|�9�M�|= = 

=G�M	(2.13) 
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2.5.2 L t̀vy Noise 

Gaussian noise cannot incorporate large bursts that typically occurring 

in real experiments. Lèvy processes represents the motion of a point whose 

successive displacements are random and independent in nature. One of the 

main feature of simple Lèvy noise models is its large jump. The skewness 

parameter enables Lèvy noise to produce an asymmetric noise distribution, 

which takes a key role on phenomena that transitions between stable points 

occur frequently in a noisy field[68,70]. Gaussian white noise hardly induce this 

type of translations due to its symmetric distribution. Hence Lèvy distribution is 

an appropriate choice when one considers realistic models with pulse 

phenomena in various systems[69]. 

Let	v	denotes the time dependent Lèvy noise and obeys the probability 

density function �w,S�v; b, y�, whose characteristic function is represented 

by[68] 

Φ�{� = d �ve)p|gh
ih �w,S�v; b, y�  (2.14) 

Therefore, for �	 ∈ �0,1�	~	�0,2� 

Φ�{� = exp	U'y{ − bp|{w| D1 − ' (
��{� tan DGw= HHY   (2.15) 

and for � = 1, 

Φ�{� = exp	U'y{ − b|{| D1 + ' (
��{� G= 	��|{|HY  (2.16) 

Here	�	 ∈ �0,2�is known as the characeristic exponent and it denotes the 

stability index that describes an asymptotic power law of the Lévy distribution. 

The constant	  ( ∈ U−1,1Y�
 

is the asymmetry or skewness parameter.                
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	b	�b ∈ �0,∞��is the scale parameter and y�y ∈ R) is the mean parameter. The 

noise intensity is denoted as � = bw and hence the Lévy process can also be 

represented as �w,S(ξ; D, µ). When α = 0.5, the stable distribution is called α-

stable Lévy distribution. 
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Chapter 3 

Nonlinear Feedback Coupling in Hindmarsh –Rose Neurons 

3.1 Introduction 

The nonlinear dynamics of a neuron can generate deterministic chaos 

under some conditions[83]. Networks of coupled dynamical systems exhibit 

many interesting behaviours such as spatio-temporal chaos, pattern formation 

and synchronization. Such networks can be used to model a large variety of 

biological and physical systems.  

The coupling schemes for different neurons such as dynamical coupling, 

time delay feedback coupling, conjugate coupling, diffusive coupling[84], 

nonlinear coupling [85], Memristor coupling [86], repulsive mean field 

interaction, damping effect by an environment[87] etc. can be applied to study 

amplitude death, oscillation death and various other dynamical evolutions of 

neuron systems. Coupling between same variables of two or more non-linear 

systems may lead to synchronization. This has been observed in many 

physical[88], chemical[89], ecological[90], and biological systems[91]. This 

phenomenon has found many applications in cryptography and in secure 

communications. Also recent works have shown that the coupling of nonlinear 

elements can invoke interesting phenomena, such as hysteresis, phase locking, 

phase shifting, phase flip, amplitude death [92] and oscillation death [93]. 

Neural synchrony is believed to be an important mechanism underlying 

many phenomena in the human brain, including the formation of neuronal 

assemblies[94]. In the brain, synchronization is often associated with epileptic 

form of behaviour[95]. The theoretical and experimental studies on chaotic 

neural dynamics helps to understand higher functions of brain such as 
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adaptation, perception, episodic memory, learning, awareness, intentionality, 

and thought [83]. The studies of dynamical behaviour of neurons are relevant in 

this context. 

Further, recent studies [87] show that when an indirect feedback 

coupling through an environment or an external system is applied to neurons 

there is a tendency for anti-synchronization, amplitude death, in phase and out 

of phase synchronization[96] etc. 

Oscillation quenching in the form of amplitude death (AD) and 

oscillation death (OD) are known to appear in oscillatory systems under 

different coupling schemes. This emergent behaviour in coupled oscillators 

occurs when they drive each other to a stable equilibrium. In the case of AD, all 

the coupled oscillators are stabilized to one equilibrium state which may be the 

origin or any other fixed point. But the coupled systems are stabilized to 

multiple equilibrium states in the case of OD. This strange phenomenon was, at 

first, explained as an effect of large parameter mismatch[97] on coupled 

oscillatory systems. Later, AD was also observed in two identical oscillators 

when a critical propagation delay [98] is introduced in the coupling. 

Synchronization of two nonlinear oscillator systems when coupled 

through a memristor like nano scale devices is also an interesting research 

area[99]. Recently its applications on neuromorphic computing, device 

modeling, signal processing etc. are reported[100-105]. It is possible to emulate 

short term synaptic dynamics with memristive devices where memristor have 

full potential for building biophysically realistic neural processing 

systems[106]. When memristor function as a novel neuro-fuzzy computing 

system[107] it can be used for creating artificial brain. The mechanism 

underlying the emergence of synchronization between two memristor-coupled 

Hindmarsh–Rose oscillatory neural cells is also interest of study. 
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In the present chapter the model of neurons described by Hindmarsh-

Rose (H-R) system is examined with various linear and nonlinear coupling 

schemes. The H-R model is a well-known model that describes the action 

potentials[108]. In nervous systems neuron encoding, transferring and 

integrating information are realized by a series of action potentials [109]. This 

model equation of H-R neuron describes actually a nonlinear dynamical system 

which demonstrates the pulse propagation in neurons, and is very important 

from biophysical perspectives[109]. Here the coupling strength summarizes 

information distribution between neurons.  

Linear indirect synaptic coupling of the H-R neurons and the coupling of 

the form of nonlinear cubic feedback are anlaysed in this chapter. The coupling 

between two neurons using different memristor as electrical synapse is also 

examined. The scope of synchronization, anti-phase synchronization, amplitude 

death, oscillation death, and near death rare spikes etc. are also studied. The 

work also focuses on the stability of different coupled systems. The simulation 

results of different coupling schemes in H-R neurons show many interesting 

dynamical characteristics of coupled neuron cells. 

It is shown that linear coupling, nonlinear feedback coupling and 

memristor based coupling establish a pathway to amplitude death and 

oscillation death. Amplitude response /death and phase resetting are analyzed in 

the present work which is having much importance in the study of brain cells. 

Our work shows possibilities of anti-phase synchronization with linear synaptic 

coupling, nonlinear cubic feedback coupling and with unidirectional cubic flux 

controlled memristor coupling. The quadratic flux controlled memristor 

coupling shows many interesting dynamics like near death rare spikes. Near 

Death Experiences (NDEs) are found to occur as a result of neurobiological 
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alterations in the brain. Cognitive, emotional and transcendental elements 

comprise NDEs[110]. 

The study of stability is always a central task for nonlinear differential 

systems. Here the general linear stability analysis[87] for the dynamics of 

nonlinear feedback, cubic flux controlled memristor, quadratic flux controlled 

memristor and exponential flux controlled memristor is done. The values of 

Lyapunov Exponent (LE) are also computed for the proposed couplings. The 

neural systems certainly involve non-linear mechanisms, so the unpredictable 

and complex behaviour of neural systems can be measured by the computation 

of Lyapunov Exponents. If physiological signals have at least one positive 

Lyapunov Exponent, they reflect an unstable and unpredictable system and are 

used to define deterministic chaos[111]. The largest LE value close to 1, 

indicate chaotic behaviour. From our plots it is clear that among the memristor 

couplings H-R neurons coupled with cubic flux controlled memristor exhibits 

more chaotic nature. In neural systems this value falls due to relaxed situations 

in the brain[111]. This suggests that when subjects are exposed to external 

sound or reflexologic stimuli, the brain goes into more relaxed state. 

3.2  Model and scheme  

Hindmarsh –Rose neuron (H-R neuron) model is chosen to study the 

spiking-bursting behaviour neurons[87]. This model is very important to 

analyse biophysical perspectives of neuronal systems. 

The dynamical equation of three-variable H-R neuron can be 

represented as  
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The variable 1x represents the membrane potential of a neuron and the 

variables 2x and 3x are related ion currents across the membrane. Here 

parameters are chosen as a=1, b=3, d=5, r = 0.006, s=4, c=1, Iext=3.00, k=1.6. 

The parameters of the system are chosen such that the individual neurons are in 

the bursting state. 

3.3 Linear coupling in H-R neurons 

3.3.1 Indirect-synaptic coupled H-R neurons 

Hindmarsh-Rose system model of neurons is described by the equations, 

which are subjected to linear-synaptic and indirect coupled equations. Here we 

take two neurons with excitatory synaptic coupling and an indirect coupling is 

introduced between them[87]. 
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��, �� and �� represents membrane potential and related fast and slow 

ion current variables for the first neuron and ��,	�	� and	�� are corresponding 

variables of second neuron. 
rV  represents the action potential. The parameter 

values are chosen as a=1, b=3, d=5, r=0.006, s=4, c=1, Iext=3.05, k=1.6. The 

parameters of the system are chosen such that the individual neurons are in the 

bursting state. Here the synaptic coupling is given by the term 

	�

��
�

���
�����
�����	 and indirect coupling is achieved by an environment. The 

last equation which governs the dynamics of � represents the active feed back 

from both the systems through the environment[87]. 

There are excitatory or inhibitory synaptic coupling depending upon 

whether the synapse is fast or slow[112]. Direct synapses are activated as soon 

as a membrane potential crosses the threshold value while the effect of indirect 

synapse is to introduce a delay from the time one oscillator jumps up until the 

time the other feels the synaptic input. 

The time series analysis and corresponding synchronization, antiphase 

synchronization and amplitude death plots are examined in section 3.3.1.1. 

3.3.1.1 Time series plots for linear indirect synaptic coupling 

The effects of synaptic coupling on the time series behaviour of neurons 

are examined. The chaotic behaviour of indirect synaptic coupled neurons 

depends on the specific values of parameters in the H-R neuron equation. 

Synchronization 

Synchronization behaviour of two linear indirect synaptic coupled H-R 

neurons is shown through time series analysis. Here for sufficiently large value 
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of one coupling parameter (	��, bursts of both neurons become synchronized as 

shown in Figure 3.1. 

 

Figure 3.1: Time series of the first variables �x����	��) of indirect and 
synaptically coupled neurons show synchronization. At � = 0,	� = 1, the 
synchronization behaviour of two neurons  is established. 

 

Anti-phase synchronization 

Anti-phase synchronization property of linear indirect synaptic coupled 

neurons (Figure3.2) is shown through time series analysis. Here one of 

parameter is of low value and other is of high value. 



Chapter 3 

74 

 

Figure 3.2: Time series of indirect and synaptic coupled neurons exhibits anti-
phase synchronization for the values of coupling strengths	� =1and =2ω 0. 

 

Amplitude death 

For higher values of coupling parameters, amplitude death of indirect 

synaptic coupled neurons is established through time series analysis of 1x and 4x  

as shown in Figure 3.3. Here oscillation of two neurons comes to a common 

steady state condition. 
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Figure 3.3: Time series plots of indirect and synaptic coupled H-R neurons 
evolves into amplitude death condition for higher values of both of the 
coupling/ control parameters  �	���		�. 

 

We have also identified the regions of amplitude death, synchronization 

and anti-phase synchronization in the two neuron system for linear, indirect 

synaptic coupling for various values of coupling parameters (Figure 3.4). The 

regions are identified by correlation analysis[87]where synchronization, anti- 

phase synchronization and amplitude death are found to emerge in. When one 

of  the control or coupling parameter is set as high value, synchronization or 

anti-phase synchronization regions are obtained. 
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Figure 3.4: Amplitude death, synchronization and anti-phasesynchronization 
regions through � − 	� plot. Regions are found by varying coupling strengths. 

Parameter range is selected as �= [0:0.5:5] and =2ω [0:0.2:1.2]. 
Synchronization and anti-phase synchronization regions obtained are depicted 
through yellow and dark blue color in the above plot. For higher values of 
control parameters amplitude death behaviour is set in, which is shown by light 
green region in the figure. 

 

Due to rigorous mathematical calculations, stability analysis of synaptic 

coupled H-R neuron is not done. 

3.3.1.2 Lyapunov Exponent plot for synaptic coupled H-R neurons 

Here we studied dynamics of synaptic coupled system through 

Lyapunov Exponent (LE) plot as shown in Figure 3.5. The increased LE value 
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reflects greater sensitivity to initial conditions and characterizes unpredictable 

variations, while low value indicate the regularity of the system. 

 

Figure 3.5: Lyapunov Exponent plot for linear synaptic coupled H-R neurons. 

3.4 Nonlinear feedback coupling in H-R neurons 

In this section the dynamical behaviour of two H-R neurons is examined 

where cubic nonlinear coupling is adopted. The excitability in neuron based 

excitable cells is most often associated with the presence of a cubic 

nonlinearity[113] in the relevant system of differential equations. When the 

nonlinear coupling feedback term of cubic order is added to the differential 

equation representing dynamical evolution of first variable of H-R model, the 

two neurons do not achieve full synchronization. But when a quadratic form of 

membrane potential is added to the differential equation representing the 
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behaviour of fast current variable 2x  or 5x [113], the behaviour of dynamics 

exhibits an interesting behaviour. Adding cubic power of membrane potentials 

to neuron model helps to understand the anharmonicity in the neural systems. It 

is found that the coupling strengths decide the evolution of the system. 

In H-R neuron, the recovery variable which is the current variable	�� 
is 

influenced by the outward flow of Potassium ions immediately after the 

discharge of action potentials. The Potassium ion current slows down the 

returning of membrane potential to the threshold value and it also reduces 

frequency of repeating discharge [113]. It also allows a delay between excitable 

simulate and action discharge. So introduction of the quadratic form of 

membrane voltage between two neurons results in a coupling feedback into the 

flow of Potassium ions. This means a change of Potassium ion concentration 

affects modulation with respect to the burst interval of H-R neurons which in 

turn may affect chaotic synchronization of two neurons [113]. 

Consider the nonlinear feedback coupled H-R neurons 
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Here the membrane potential of first neuron and the related ion currents 

across the membrane are represented by the variables ��,�����	��. Parameters 

a, b, c, d, r, s and Iext are chosen as a=1, b=3, d=5, c=1 r =0.006, s=4, Iext=3.05 

and initial condition of the system is chosen such that	[��, ��, ��, ��, ��, �� ] are 
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assigned the values [0.3, 0.3, 3.0, 0.2, 0.35, 3.2] where � and 
2ω are coupling 

parameters. Here( )3
4

3
1 xx −ε  represents nonlinear feedback of cubic order. By 

varying the value of coupling strength various dynamics of chaotic neurons are 

analysed. 

3.4.1.  Linear stability analysis 

We present an analysis of stability of the steady state of two H-R 

neurons coupled by non-linear cubic feedback coupling.  

�%� = &���� + ����� − ���� 

	�% � = &���� + 	����� − ���� 

�%� = &���� + ����� − ���� 

	�% � = &���� + 	����� − ���� (3.4) 

Here � and		�	are coupling parameters. Let �̅�	, �̅�	, �̅�	, �̅�be the steady 

state of the system, then &���, �̅��=0, &���, �̅��=0, &���, �̅��=0 and &���, �̅��=0. 

         
Let

 
	*�, *�,, *�, *�,

 
be the inifinitesimal perturbations of the system. As 

*�, *�,, *�, *�	
 
grows ��, ��,��	, ����� move away from steady state and if these 

values of decay to zero, the variable values of  ��, ��, ��, ����� move towards 

steady state. 

To obtain stability of the steady state of systems, we write variational 

equations formed by linearizing above equations. 

*%� = �%� = &��̅� + *��  (3.5) 

Using Taylor expansion and neglecting higher order terms, 
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*%� = *�	&′���, �̅��  (3.6) 

From equation (3.4 ) and ( 3.6)we get 

*%� = &′����*� + ��*�� − *��� (3.7a) 

*%� = &,����*� + ��*�� − *���  (3.7b) 

Let the synchronization and antisynchronization tendencies are 

expressed through the variables 	*-./and *0/12  respectively. Then  

*-./ = *� − *�
 
and  *0/12 = *� + *�	 

	*% -./ = *%�−*%� 

*%0/12 = *%�+*%�  (3.8) 

So condition for synchronization is obtained as 

*%-./ = 345�
���45�
��� 6 *-./ + 345�
���45�
��� 6 *0/12 + ��*�� − *�� − *�� − *���   (3.9) 

Considering the time average value of	&,����	���&,���� are approximately 

same and are replaced by effective constant value	7, the equation changes as 

	*% -./ = 7	*-./	 (3.10) 

From equation (3.10), it is clear that cubic order feedback alone doesn’t 

give a complete synchronization. 

Similarly for other set of variables condition becomes 

*%-./ = *%� − *%� 

   =	7	*-./ +2	��*�� − *���  (3.11) 
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From equation (3.11), it is clear that synchronization is achieved through 

the term 	2	��*�� − *���. This is in agreement with numerical analysis of the 

coupling scheme.  

Anti-synchronization properties are obtained for the system through the 

same analysis described above. 

*%0/12 = *%�+*%� 

         =7	*0/12 + 2��*�� − *��� 

          =	7	*0/12 +2�. *-./�*�� + *�*� + *���  (3.12) 

Second term in the above equation leads to antisynchronization. 

Similarly, for other set variables, 

*%0/12 = *%�+*%� 

          =7	*0/12 	  (3.13) 

From equation (3.12) and (3.13) Jacobian matrix is written as 

9 = : 7 0
2��*�� + *�*� + *��� 7;	 (3.14) 

Jacobin value for equations (3.7) and (3.10) is also calculated as above 

and Eigen values obtained may be real which is positive or negative and 

corresponding fixed point is of stable node or unstable node. 

Eigen value of the above equation can be obtained as  

< = 7 ∓ >7� + 8�7�*�� − *���  (3.15) 
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Antisynchronization and Synchronization tendencies are effective when 

the corresponding, Lyapunov Exponents, i.e., real parts of the eigen values are 

negative. So condition for stability is obtained as	*�� > *��. 

3.4.2 Time series plot of coupled neurons with cubic order feed back 

Synchronization 

Synchronization of two nonlinear cubic feedback coupled H-R neurons 

are shown through time series analysis. As nonlinear coupling replaces linear 

coupling, the synchronization pattern  given in Figure 3.1 changes to behavior 

shown in Figure 3.6  which shows synchronization of first variables for 

Iext=3.05. The bursting behavior for synchronization exhibited by the H-R 

system is an additional feature shown by the presence of nonlinear coupling. 

 

Figure 3.6: Time series plots of first variables show synchronization of coupled 
neurons. Bursting synchronization of neurons with nonlinear feedback in cubic 
order are obtained for � = 1,	�=1, Iext= 3.05.  
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Anti-phase synchronization 

The anti-phase synchronization of nonlinear cubic feedback coupled 

neurons is established through time series analysis for certain values of coupling 

parameters and current. Here first variables of two coupled H-R neurons are 

showing anti-phase properties, which are depicted through blue and red colour 

as shown in Figure 3.7. The plot is obtained for the parameter values                        

� = 0,	�=0.001, Iext= 3.00.                

 

Figure 3.7: Time series plots of first variables shows anti-phase 
synchronization of coupled neurons with cubic non linear feedback with 
parameter valuesε = 0,

2ω = 0.001, A�
1 = 3.00. 
 

The regions of synchronization, anti phase synchronization and 

amplitude death for different ranges of control parameters are depicted through 

Figure 3.8. Here control or coupling parameters are selected in the range                 

�= [0:0.5:5] and 
2ω = [0: 0.2:1.6].  
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Figure 3.8: Anti phase synchronization, synchronization and amplitude death of 
cubic feedback coupled neurons are examined through	� − 	�	plot. When the 
value of � = [0.9:0.5:5] and =[0:0.5:1.6]  synchronization regions are observed 
and is shown by yellow color in the figure.For the range of � = [0:0.5:0.7] and 
[0:0.5:1.6],dark blue region shows ant-synchronization. Also for the values  of  
� = [0.75:0.5:0.89] and [0:0.5:0.4], amplitude death is observed, depicted by 
light green. 

 

3.4.3  Lyapunov exponent plot for nonlinear cubic feedback coupling in 

H-R neurons 

The behaviour of nonlinear cubic feedback coupled H-R neuron is 

analysed through Lyapunov Exponent (LE) plot which is found to exhibit 

similar behaviour as in Figure 3.5. Here the low LE values indicate regularity of 
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the coupling method. Largest LE is obtained in the range -1.1834 to -1.1832. It 

is in agreement with synchronization stability of this system observed by Fang 

and etal.[107].  

3.5.  Memristor based coupling in neurons 

In 1971, Leon Chua postulated the fourth basic circuit element 

memristor[114, 115] and established a missing constitutive relationship between 

the electrical charge and the magnetic flux. Using Lewis Carroll’s portmanteau 

naming technique[116], Chua named this hypothetical nonlinear device as 

memristor (memory + resistor). It demonstrated the hysteresis property of the 

ferromagnetic core memory and also the dissipative characteristics of a resistor. 

Clearly, in such devices, the nonlinear resistance can be memorized indefinitely 

by controlling the flow of the electrical charge or the magnetic flux[117]. 

 

Figure 3.9: Comparison of resistor, capacitor, inductor and memristor 

Memristor are nano scale devices. Although memristor and memristive 

systems have been introduced a long time ago by Chua, applications of them 
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have developed recently after the invention of the nano–scale HP memristor 

[118]. 

A memristor consists of a variable resistance and has two terminals. In 

DRAM a memristor can replace the capacitor which can store one bit of data. 

Then this memory is not volatile, has no leakage power which at the same time 

is more stable. Also in comparison with flash memory, this memory has 

improved speed and scalability. A memristor can also connect electric charge to 

magnetic flux. As its resistive value is retained it can increase flow of current in 

one direction and can decrease flow of current in the opposite direction. 

Memristor finds improved applications[119] in logic circuits and in 

digital memory. In neuromorphic systems they can act as basic building blocks 

where they behave like biological synapses. Neurons and synapses act as 

electronic systems. Besides being at the basis of next-generation ultra dense 

non-volatile memories, a nano scale memristor also has the potential to 

reproduce the behaviour of a biological synapse. As in a living creature the 

weight of a synapse is adapted by the ionic flow through it, so the conductance 

of a memristor is adjusted by the flux across or the charge through it depending 

on its controlling source[86]. 

The proposed memristor are having cubic nonlinearity which is 

represented by ( ) 3
31 φφφ kkq += . It is a smooth continous cubic functionand 

corresponding memductance is ( ) 2
31 3 φφ kkW += . It is used as a memristive 

coupling term and will act as a artifical synapse between coupled neuron cells. 

Hence they are responsible for chaotic dynamics in the system. 

In this section two Hindmarsh-Rose neurons are considered, coupled via 

a memristive device mimicking a biological synapse. The investigation is done 
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on how the dynamics of the memristive element may influence the 

synchronization and other interesting properties. 

3.5.1  Memristor controlled by cubic order flux 

Flux controlled memristor is used to emulate the excitatory and 

inhibitory synaptic connection between the neurons[86]. It is used as a 

memristive coupling term and will act as a artifical synapse between coupled 

neuron cells. 

Consider the memristive mutual coupled H-R equations as below 
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 (3.13) 

The variable 1x  represents the membrane potential of a neuron and the 

variables 2x  and 3x are related ion currents across the membrane. Where and

4x gives the coupling between the neurons achieved through memristor.� is 

flux variable due to memristor. Here the memductance term �C + D��� function 

as cubic flux controlled memristive term and act as coupling synapse between 

two neurons.  

 



Chapter 3 

88 

3.5.1.1. Linear stability analysis of cubic flux controlled memristor coupling 

We present the analysis of stability of the steady state of two H-R 

neurons coupled by cubic flux controlled memristor.  

�%� = &���� − E�∝ +D������ − ��� 

	�% � = &���� + E�∝ +D������ − ��� 

�%=��� − ���                                        (3.14) 

Here	∝	and	Dare coupling parameters and c is a constant. Let �̅�, �̅�	, �G 

be the steady state of the system, then &���, �̅��=0, &���, �̅��=0 and                  

&��, �G� = 0. 

Let
  
	*�, *�,�	

   
be the infinitesimal perturbations of the system. As *�, *�,H grows 

��, ��	���	� 
move away from steady state, if these values decay to zero 

��, ��	���	� move towards steady state. 

To obtain stability of the steady state of two systems, we write 

variational equations formed by linearizing equation as below. 

*%� = �%� = &��̅� + *�� 

Using Taylor expansion and neglecting higher order terms, 

*%� = *�&′���, �̅�� 

	*% � = &′����*� − E�C + D������ − ��� 

	*% � = &,����*� + E�C + D������ − ��� (3.15) 
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Let the synchronization and antisynchronization tendencies are expressed 

through the variables *-./	and *0/12respectively. 

Then  

*-./ = *� − *�	and	*0/12 = *� + *�	                                           (3.16 a) 

	*% -./ = *%�−*%�                                                                                        (3.16b) 

*%0/12 = *%�+*%� (3.16c) 

From equation (3.14) equation (3.16 a) changes as 

*%-./ = 345�
���45�
��� 6 *-./ + 345�
���45�
��� 6 *0/12 − 2E�C + D���*-./  (3.17) 

Considering the time average value of	&,����	���&,����are 

approximately same and replaced by effective constant value	7, equation 

changes as 

	*% -./ = 7	*-./-2E�C + D���*-./ (3.18.a) 

Similarly we get,  

*%0/12 = 7	*0/12 (3.18.b) 

�%=E*-./ (3.18.c) 

From equation (3.18 a) Lyapunov Exponent is obtained as 

< = 7 − 2E�C + D��) (3.19) 
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The synchronization and anti synchronization tendencies effective when 

corresponding Lyapunov Exponents, i..e, real part of eigenvalues are negative. 

So condition for stability is given as below. 

D > I
�JKL 

-	C	
                                                    

(3.20.) 

These synchronization conditions are compatible with the numerical 

evaluation. Also the antisynchronization properties are not exactly observed for 

memristor coupled systems .It is also evident from the equation (3.18.b). 

3.5.1.2  Time series plot of coupled neurons with cubic flux controlled 

memristor 

Bidirectional coupling 

In bidirectional coupling both neurons are influenced by a memristor of 

cubic order flux. Synchronization and amplitude death behaviour are exhibited 

by the system as described  below. 

Synchronization behaviour in bidirectional coupling 

Synchronization of H-R neurons coupled by cubic flux controlled 

memristor shows chaotic bursting synchronization for the parameters a=1, b=3, 

d=5, c=1, α=0.05, β=0.5 and Iext=3. Time series plots of first 

variables	��	���	�� shows synchronization pattern where the number of spikes 

per burst is irregular. The dynamics exhibited is very similar to that of coupled 

neurons with cubic order feed back and it is shown in Figure 3.6. 

Amplitude death 

As the values of α, β and current are changed, time series plots of cubic 

flux controlled memristor coupled H-R neurons shows the amplitude death state 
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as shown in Figure 3.10. Here first variables of coupled H-R neurons comes to a 

common stady state which was unstable other wise.The parameter values are set 

as α=0.005, β= 0, Iext=3 for obtaining the plot. 

 

Figure 3.10: Time series plots of first variables �������of cubic flux 
controlled memristor shows amplitude death state. When the parameter values 
are set as α=0.005, β= 0, Iext=3 amplitude death states of neurons are emerging 
out. 

Unidirectional coupling 

In unidirectional coupling only one neuron is triggered by a memristor 

of cubic order flux while the other neuron is not influenced by coupling. In the 

scenario represented by equation (3.13), as the  bidirectional coupling is 

replaced with unidirectional coupling of cubic flux controlled memristor, the 
1x  

variable (the membrane potential of first neuron) is not infulenced by the term 

( )( )41
2 xxu −+βα . The dynamics observed are shown through Figure 3.10-

Figure 3.13. 



Chapter 3 

92 

Synchronization behaviour in unidirectional coupling 

Synchronization pattern of two H-R neurons coupled with unidirectional 

cubic flux controlled memristor is shown in Figure 3.11 through time series 

analysis. Here bursting synchronization of bidirectional coupling is replaced by 

the tonic spiking in unidirectional coupling. As the neuron is stimulated, the 

inhibitory ion currents will dominate the stimulating current and corresponding 

membrane potential will decrease. Persistence of this activity leads to tonic 

spiking. The plot is obtained for the parameter values Iext =2.8,	C =0.001, and 

D=0.02. 

 

Figure 3.11: Time series plots of first variables �����	��shows 
synchronization pattern in unidirectional coupled cubic flux controlled 
memristor. The parameters are chosen as Iext =2.8,	C=0.001, and D=0.02 for 
obtaining tonic synchronization pattern of neurons. 
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Tonic spiking of one neuron and the inactive state of the other neuron in 

unidirectional coupling 

Time series analysis of two H-R neurons coupled with unidirectional 

cubic flux controlled memristor leads to tonic spiking of the neuron which is 

coupled with and inactive or death state of the uncoupled neuron as shown in 

Figure 3.12. 

 

Figure 3.12: Time series plots of first variables ��	���	��of the two coupled 
neurons. Here the coupling is unidirectional through flux controlled memristor. 
With parameter values d=2.82, Iext =4,α =1,andβ=0.01 tonic spiking is shown 
up for one neuron and inactive or death state is exhibited by the uncoupled 
neuron. 
 

Bursting and death of neuron 

As the parameters are changed, the tonic spiking give way to bursting 

for the coupled neuron while the uncoupled neuron remains in the resting state 

for two H-R neurons coupled with unidirectional cubic flux controlled 
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memristor. The dynamics is established through time series plots (Figure 3.13) 

for the parameter values Iext =5, α= 0.02 and β=0. 

 

Figure 3.13: Time evolution of first variables 
1x 	���	 4x for unidirectional 

coupled cubic flux controlled memristor. As the parameter is changed to Iext =5, 
α=0.02 and β=0, coupled neuron exhibits the bursting but the other neuron 
seems to be inactive. 

 

Anti-phase dynamics 

For still other parameter values it is interesting to report anti phase 

synchronization of two H-R neurons with unidirectional coupled cubic flux 

controlled memristor as shown in Figure 3.14. Here bursting behaviour of two 

neurons shows anti phase dynamics. To obtain the desired plot, parameter 

values are set as Iext =2.8,α =0.02, and β=0.3. 
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Figure 3.14: Time series plots of first variables ��	�����shows anti phase 
synchronization in unidirectional coupled by cubic flux controlled memristor. 
Anti-phase dynamics obtained above has some similarity with that of time 
series plot of Firing pattern of autapic neuron[114]. Parameters are chosen as 
Iext =2.8,  α =0.02, and β=0.3. 

 

3.5.1.3 Lyapunov exponent plot 

The dynamics of Lyapunov Exponents for H-R neurons coupled with 

cubic flux controlled memristor is shown in Figure 3.15. It is observed that 

largest LE value is close to 1 (0.9727). Positive value of LE’s obtained due to 

coupling having much importance. For arterial blood pressure time series, 

ocular aberration dynamics of human eye etc. shows positive Lyapunov 

Exponents. So our coupling scheme can be referred to some neural base system 

analysis. 
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Figure 3.15: Lyapunov Exponent plot for cubic flux controlled memristor 
coupled with H-R neurons. 

 

3.5.2  Memristor controlled by quadratic flux 

The properties of memristor controlled by quadratic flux with varying 

coupling strengths and external currents are studied. For the quadratic flux-

controlled memristor [121] studied in this section, the memristance can be 

expressed as:  

( ) γβφαφφ ++= 2M  (3.21) 

We can see that, ( )φM  is linear flux-controlled as 0=α . Memristor of 

this type has been researched widely, so we focus on the influence of quadratic 

type coupling in H-R neuron. The term ( ) γβφαφφ ++= 2M  act as quadratic 

memristive function. 
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The variable��represents the membrane potential of a neuron and the 

variables 2x  and 3x are related ion currents across the membrane for first 

neuron. Here parameters are taken as a=1, b=3, d=5, c=1, d=2.84, r=0.005, s=4 

and k=1. 

3.5.2.1 Linear stability analysis 

As in section 3.5.1, we can do linear stability analysis of quadratic flux 

controlled memristor. Then the condition for stability in quadratic flux 

controlled memristor is obtained as 

D > MI�N�OP − CQR  (3.23) 

3.5.2.2  Phase portrait and time series plots of memristor coupled neurons 

controlled by quadratic flux 

Synchronization 

Synchronization of two H-R neurons coupled with quadratic flux 

controlled memristor is shown through the 52 xx − plot. Parameter values are 

selected as Iext =2,α =2,β=1 and γ=1. Here two neurons behave in the same way 

and full synchronization is achieved as shown in Figure 3.16. 
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Figure 3.16: Phase portrait of second variables ��	���	��shows 
synchronization pattern of memristor controlled by quadratic flux. 
Synchronization is observed for the parameters Iext =2,α =2,β=1 and γ=1. 

Oscillation death 

Time series of two variables 1x  and 4x of H-R neurons coupled with 

quadratic flux controlled memristor shows oscillation death for the parameter 

values Iext =1.4,α =1,β=0 and γ=1. The coupled two neurons takes a stable rest 

state as depicted in Figure. 3.17. 



Nonlinear Feedback Coupling in Hindmarsh –Rose Neurons 

99 

 

Figure 3.17: Time series plots of first variables ��	���	��	of neurons with 
quadratic flux controlled memristor. With parameter values Iext =1.4,α =1,β=0 
and γ=1 oscillation deaths of neurons which are controlled by memristor having 
quadratic flux are shown. 

 

Near death spikes 

For someparameter values an interesting dynamics is exhibited by the 

H-R neurons which are coupled via quadratic flux controlled memristor. Rare 

spikes are observed with time variation of variables of two neurons before death 

(Near Death rare Spikes [122–124]). Experimentally it is observed that 

moments before death, the patients experiences a burst in brain wave activity, 

with the spikes occuring simultaneously for two coupled neurons and with 

approximately of same intensity and duration around the time slot 125 which is 

shown in Figure 3.18. 
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Figure 3.17: Time series plots of first variables ��	���	��	of neurons with 
quadratic flux controlled Memristor. Dynamics obtained for parameter values 
Iext =4, α =5, β=1, γ=0 and Iext =3, α =2, β=1, γ=0 shows phenomena like near 
death rare spikes. 

 

The near death spikes are supported by experimental observation [122–

124]. Experimentalists implanted several electrodes across the brains of nine 

rats to measure their brain waves rhythmic pulses of neural activity depending 

on their frequency. The rats were sedated with anesthetic, and then killed with 

either by a lethal injection that stopped their hearts, or a fatal dose of carbon 

dioxide, after the hearts have stopped, most of these brainwaves weakened with 

time. But one set, the low-gamma waves produced when neurons fire between 

25-55 times per second, became stronger for a brief period. The activity in 

different parts of their brains also became more synchronized. Their low-

gamma waves, in particular, became synchronized when they were in their near-

death state than when they were anaesthetized or awake [122–124]. 
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3.5.2.3 Lyapunov exponent plot 

Lyapunov exponent plot for H-R neurons coupled with quadratic flux 

controlled memristor dynamics is shown through Figure 3.19. Sensitivity to 

initial condition of systems and its regularity are examined through plot. 

 

Figure 3.19: Lyapunov exponent plot for quadratic flux controlled memristor 
coupled with H-R neurons. 

 

3.5.3  Memristor controlled by exponential flux 

The cubic flux controlled memristor have limitations in situations which 

demand a larger current[125] and not compatible with terminal voltage 

fluctuations. Here the memductance or Memristance always keep increasing or 

decreasing until polarity of voltages or current reverses. The proposed 

exponential model obeys stable variation law of the memductance 

(memristance) under various excitation voltages[125] and hence this model 
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meet large current situations. So the memristor controlled by exponential flux is 

chosen for coupling parameter. 

A novel model of the flux-controlled memristor is selected as below 

( ) ( )1−= bqakbq φ  (3.23) 

Where a 0〉 , and kb a0〉 . Then, the memductance function of this 

memristor can be given by 

( ) lnb qW a k b aφ =  (3.24) 

When b 0〈 , above equation model is a decremented flux-controlled memristor, 

that is, it’s Memductance is monotonically decreasing (increasing) when the 

supply voltage is positive (negative). On the contrary, when b 〉 0, 

equation presents an incremental flux-controlled memristor. 

Consider the exponential flux controlled H-R model equations as 
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  (3.25) 

The variable �� represents membrane potential of a neuron and the 

variables 2x  and 3x
 are related ion currents across the membrane for first 
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neuron. The term akba bq ln  is a function that act as exponential flux controlled 

memristor. The parameters take values b=3, c=1, d=5, r=0.005, a=e, 

b=50log(0.5), k=10. With the variation of external current various dynamics are 

obtained as in Figure. 3.14-Figure.3.17. 

3.5.3.1 Linear stability analysis 

For exponentially flux controlled memristor coupling with H-R neurons, 

the condition for stability is found to be 

7 < 2�TUVWX��  (3.26) 

For decrimental flux controlled memristor (b<0) the condition for 

stability is reversed. 

3.5.3.2  Phase portrait and time series plot of memristor coupled neurons 

controlled by exponential flux 

Synchronization 

Phase portrait plots of second variables 2x
 and 5x of two H-R neurons 

coupled with exponential flux controlled memristor shows synchronization 

similar to that of quadratic flux controlled memristor (Figure.3.15). 

Response to external current 

The response of membrane potential of two coupled neurons with 

respect to time is examined in detail which is shown in Figure. 3. 20. When the 

external current is set to Iext = 3, the neuron is stimulated and the membrane 

potential will change. Initially due to stimulating ionic currents, the membrane 

potential will increase. After a certain point, the inhibitory ionic currents will 

dominate the stimulating currents and the membrane potential will decrease 
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which Results in a spike which represents action potential. If this behaviour is 

persistent, then it is called tonic spiking. 

(a) 

 

(b) 

 

Figure 3.20: (a) Three dimensional ��, ��, ��plot shows dynamics of the 
system. (b) Time series plots of first variables ��	���	��	of neurons which are 
coupled through a memristor controlled by exponential flux. When external 
current is set to Iext = 3, tonic spike synchronization of neurons are obtained. 
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Bursting synchronization 

As the external current is changed bursting synchronization is resulted in 

and the corresponding phase space plot of two H-R neurons coupled with 

exponential flux controlled memristor shows (Figure 3.21) interesting 

dynamics. 

(a) 

  

(b) 

 

Figure 3.21: (a) Dynamical behaviour of system shown through three 
dimensional ��, ��, ��	plot. (b)Time series plot of first variables �����	��	shows 
bursting synchronization of neurons where coupling is due to memristor which 
is controlled by exponentially varying flux and here external current is set to    

extI  =4. 
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Oscillation death  

Time series plots of first variables ��	���	��	of two H-R neurons 

coupled with exponential flux controlled memristor shows oscillation death for 

certain parameter values. If the parameter values a, b, d and Iext are chosen as 

a=1, b=0.01, d=2.82, and Iext=3.8, the two neurons approach a stable rest state 

as in the case of quadratic flux controlled Memristor as shown inFigure3.16. 

3.5.3.3 Lyapunov exponent plot 

Dynamics of Lyapunov Exponent of H-R neurons coupled with 

exponential flux controlled memristor is shown in Figure 3.22. Higher value 

reflects greater sensitivity and low value shows regularity. Largest LE values 

are in range -1.0457 to -1.0456. 

 

Figure 3.22: Lyapunov Exponent plot for exponentially flux controlled 
memristor coupled with H-R neurons. 
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Among different memristor coupling, cubic flux controlled memristor 

coupling in H-R neurons shows more chaotic behaviour since it has largest 

Lyapunov value is close to one. 

3.6. Summary 

The present work describes the possibilities of linear and nonlinear 

coupling in neurons. It has implications for the analysis and characterization of 

neuronal interactions. 

Linear models of effective connectivity in brain assume that the multiple 

inputs to a brain region are linearly separable. This assumption does not allow 

activity-dependent connections that are expressed in one context which is not 

reflected in the other. This problem is overcome by adopting nonlinear models 

that include nonlinear interactions among inputs. These interactions can be 

considered as a context- or activity-dependent modulation of the influence that 

one region exerts over another [126]. 

The present work establishes the fact that indirect synaptic coupling 

dynamics of H-R neurons exhibits the properties like synchronization, anti 

phase synchronization and amplitude death. As feedback coupling is varying in 

a cubic order, synchronization and antisynchronization regions are observed. 

Different memristor based couplings are also taken in to account. Both 

bidirectional and unidirectional coupling of cubic flux controlled Memristor in 

H-R neurons are examined. Mutual coupling of two neurons governed by H-R 

equations exhibits the properties of synchronization in tonic spiking and 

bursting. It also exhibits the property of amplitude death for certain values of 

coupling parameters. The unidirectional coupling shows tonic spiking or 
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bursting for one of the neurons and death like phenomenon for the uncoupled 

neuron depending upon the coupling coefficient and external current. 

Memristor coupling of quadratic order shows the behaviour of 

synchronization, oscillation death and other interesting dynamics like near death 

rare spikes for the neurons. Memristor controlled by exponential flux also 

showed the synchronization and oscillation death but near death rare spikes are 

found to be absent.  

We have done the general stability analysis for various couplings in H-R 

neurons. Lyapunov Exponent plots are also examined in each case. It is 

observed that among different Memristor based coupling, cubic flux controlled 

Memristor shows more chaotic nature. 

The present work is on the effect of different coupling schemes in 

biological neuron model. The rich dynamical behaviour exhibited by the 

coupled systems depends upon system parameter values. We also intend to 

extend the work to latest developments in the field of Memristor, such as 

Spintronic memristor, and to its potential applications in neuromorphic circuits. 
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Chapter 4 

Influence of Memristor and Noise on H-R neurons 

4.1.  Introduction 

When noise and external electromagnetic radiation is imposed on the 

neuronal model, it can influence mode transition of electric activities and 

synchronization pattern formation. In the present chapter improved Hindmarsh 

Rose neuron model (H-R neuron) is selected and the electrical activity of the 

neuron model under the influence of quadratic and exponential flux controlled 

memristor is analysed. Different neuronal responses towards noise which acts as 

the control parameter are studied. The Hamilton energy is computed and the 

stability analysis for the system is performed. Hence the work gives a pathway 

to understand influence of electromagnetic flux on the overall activity of 

neurons and it is established that it introduces high nonlinearity to the neuron 

model. 

The role of electrical activity of neurons for neuroprotection [127] is an 

emergent research field. When neuron is exposed to electromagnetic radiation, 

the effect of radiation could be described by an equivalent current in neuronal 

loop [128] and the corresponding electrical activities could be detected. 

Experimental studies of complex electrical activities in cardiac tissues with 

electromagnetic induction are reported which say that these activities causes 

spiral waves, encounter breakup and turbulence in electrical activities [129]. 

Nowadays the electromagnetic induction studies [130] on neuronal 

networks are carried out where memristor is used to describe the memory effect 

which remembers the magnetic flux across the membrane of neurons or cells. 

Memristors (memory+ resistors) are nano scale devices, where the nonlinear 

resistance can be memorized indefinitely by controlling the flow of the 



Chapter 4 

112 

electrical charge or the magnetic flux[131,132]. The non –volatile memory 

property of a memristor is a consequence of state dependent ohms law. So it 

affects the potential difference and may lead to a structural change due to the 

supplied electrical energy[133]. The ‘on’ state is represented by a memory 

function. A conservation function gives the time-varying resistance which 

represents the ‘off’ state[133]. It can be used as a synapse in hardware of 

artificial neural networks. The magnetic effect due to memristor is similar to 

that of atomic scale magnetic susceptibility exhibited by NMR spectroscopy 

and of MRI imaging[134]. Memristive neural network studies help to integrate 

information in different functionally specialized regions of brain. Further, the 

neuronal synchronization helps to encode information in brain through different 

coherent states which arise through temporal patterns of neural activity and it 

emulates even an optical illusion [135,136].  

Recent studies of coupled networks under electromagnetic induction 

show that the synchronization of neurons also causes enlargement of frequency 

spectrum and self-induction effect[137]. When external electromagnetic 

radiation is imposed on the Fitzhugh–Nagumo neuron model[138,65], it helps 

to detect the mode transition of electrical activities in a myocardial cell. 

Noise also can influence and enhance the synchronization pattern 

formation in excitable systems[139]. The local magnetic flux density due to 

neurons is very much less than that of the Earth’s magnetic field. So the 

surrounding noise always becomes comparable to neuronal magnetic signal. 

The influence of noise can be studied by changing its frequency or 

intensity[140]. It is also reported [141] that information processing due to 

synchrony can be modulated by noise. 

Energy is an important parameter which influences the normal 

behaviour of brain and its usage mainly depends on the rate of variation of 
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action potential and also on the fraction used by brain for signaling activity. 

Various studies [142-144] are done on metabolic energy for neural activity, 

energy efficient neural codes, collective behaviour of biological oscillators and 

its energy cost. It is reported that the energy is much dependent on the mode of 

electrical activities instead of the external forcing currents directly and a smaller 

energy occurs under bursting states[145]. The study helps to understand the 

onset of epilepsy (bursting synchronization induced epilepsy makes energy 

release). The calculation of Hamilton energy of the neuron systems based on 

Helmholtz’s theorem can explain neurobiological energy states[146]. It is also 

observed that an event based minimum energy input is desirable clinically for 

brain simulation treatment of neurological diseases (like Parkinson’s 

disease)[147 ]. The delayed response of Hamilton energy to external forcing 

currents confirms that neuron contributes to energy coding[148,149]. These 

results prompt for further investigation on energy problems in neuronal 

network. 

Bifurcation analysis[150] of H-R neuron helps to understand the 

relationship between neural firing patterns which are induced by corresponding 

modulations in potassium channel of neuron model. Huaguan Gu and et al.[151] 

experimentally demonstrated the bifurcations from bursting to spiking state 

predicted by theoretical models. The effect of external forcing current on 

electrical activities of neuron can be predicted with bifurcation diagram[152]. 

Transverse Lyapunov Exponent plot[153] confirms synchronization stability. 

Also to determine the neuro-computational properties of cell, bifurcation 

analysis is important. 

The Hindmarsh-Rose model with fractional order[154] can give an 

explanation to dynamical properties of neuronal electric activities. It is observed 

that autapse-modulated neuron model and the time- varying electromagnetic 
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field can modulate the membrane potential of neuron and even the time delay in 

autapse can suppress the bursting in neuronal behaviour[155]. Recent studies 

[156] show that field coupling is also an effective way to contribute towards 

electromagnetic induction on neurons, when synaptic coupling is not available. 

Lulu Lu and et al. [152] have examined the mode selection in neural activities 

and has done the corresponding bifurcation analysis under high and low 

frequency current to study electromagnetic induction of four-variable H-R 

model with cubic flux controlled memristor. Also, studies of Mengyan Ge and 

et al [157] showed that for a magnetic flux driven neuron model, different 

responses in electrical activities are resulted in under periodic frequency of 

electromagnetic radiation and in the presence of Gaussian white noise. 

Studies of S.R. Hudson and et al. [158] have identified that the quadratic 

flux minimizing surfaces can be constructed for toroidal magnetic fields. The 

memory based quadratic and exponential flux induction can influence 

conductance in channels including channel blocking [159]. Also, studies[160] 

show that mathematical model can interpret the experimental observation of 

exponential variation of fluxes which permit to evaluate the extent to which the 

membrane is affected by external flux. Under these contexts it seems to be 

relevant to examine influence of quadratic and exponential flux controlled 

memristor on neurons. 

In section 4.3 the influence of quadratic flux based memristor on the 

electric activities properties of improved H-R model is analysed. The dynamics 

is examined for periodic and non periodicforcing current. Bifurcation diagram 

of Inter spike interval versus current and the corresponding Lyapunov Exponent 

for the system is plotted. In Section 4.5, the effect of noise on electromagnetic 

induction of neuron is examined. Section 4.6 gives the energy of improved H-R 

model under quadratic flux and the corresponding numerical analysis. In 
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Section 4.7, the study is extended on coupled neurons under quadratic and 

exponential flux and the Transverse Lyapunov exponent plot for coupled 

neurons under quadratic flux is also analysed. 

The studies exhibit the highly interesting rich phenomena such as 

transitions from the rest state to the firing state and from the spiking state to the 

bursting states in the four variable H-R neuron models with these different flux 

based memristors. Also, the states exhibit tonic spiking and oscillation deaths 

under various external conditions. When noise is added to the neuronal model 

the suppression of these activities is achieved. The mode transitions exhibited 

are different from that of improved H-R neuron model with cubic flux 

controlled memristor in the presence of Gaussian white noise [157,161]. 

Numerical analysis of Hamilton energy also supports the different 

transistions in electrical modes. The energy exhibits discontinuous behaviour 

with respect to the variation of external current. Bifurcation analysis of Inter 

spike Interval (ISI) versus current also shows difference in behaviour when 

compared to that of ordinary H-R neuron model and improved H-R neuron 

model with cubic flux based electromagnetic induction[130]. The irregularity in 

the behaviour of neurons is also examined through Lyapunov Exponent 

plot[162]. 

For coupled neurons, synchronization behaviour of neurons under 

quadratic flux and noise shows periodic, chaotic and tonic type patterns. The 

quiescent state and subsequent suppression of oscillations are observed for high 

values of noise intensity and coupling strength. For exponential flux under 

noise, the synchronization pattern leads to oscillation death. 
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4.2.  Model and Scheme 

The general H-R model in an isolated neuron has been extended to an 

improved model of four variables[73,130]. The new variable �	incorporate 

magnetic flux. Hence this model can be effective to detect the effect of 

electromagnetic radiation by applying external magnetic flux associated with 

electromagnetic field on the dynamical equation for magnetic flux. The neuron 

model is made to interact with memristor. The memristor magnetic flux is due 

to the flux arising from the ions. 

The four –variable H-R neuron model with memristor can be written as 

��� = �� − 	��
 + ���� − �
 + 
��� − ������� 
��� = � − ���� − �� 

��
 = ������ − ���� − �
 

�� = ���� − ���  (4.1) 

Here the variables ��, ��	��	�
 represent the membrane potential, slow 

current recovery variable and adaption current for first neuron and ��, ��	��	�  

represents corresponding variables for second neuron. The important electrical 

signal in neurons arises from a big voltage change (of the order of many 

millivolts) which is termed as action potential or membrane potential 

(spikes)and it occurs in less than a second for neuron[163]. The parameter 

values are selected as		 = 1, � = 3, � = 1, � = 5, � = 4, � = 0.006, �� = −1.6. 

External forcing current is represented by the term 
��� and the magnetic flux 

across the membrane is denoted by the fourth variable �. The memductance 

corresponding to the charge (��� is given by ����. Relation among induced 
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current, flux and memristor can be understood by Faraday’s law of 

electromagnetic induction[140] as given below. 

) = *+�,�*� = *+�,�*, *,*� = ����- = �������           (4.2) 

Here ����denotes the changes in magnetic flux induced by membrane 

potential and	���	represents the leakage of magnetic flux. Also the interaction 

between membrane potential and magnetic flux is represented by the variables k 

and k2. The effect of electromagnetic induction and corresponding modes of 

electrical activities with memristor could be examined by finding the influence 

of the magnetic flux on membrane. Also the term �������denotes induced 

current and it causes the variation in magnetic flux which in turn generates 

Faradic current. 

4.3  Electric activities in H-R neuron  

Different modes in electrical activities are studied with the help of time 

series of membrane potential of neuron. Studies on Bifurcation diagram of Inter 

spike Interval, Lyapunov Exponent, variation of Hamilton energy with external 

simulation and synchronization are done for the in the respective neuron 

models. Synchronization behaviour on coupled neurons is also examined. 

4.3.1 Electrical activities in an improved H-R neuron under 

electromagnetic induction without noise 

In this section the study is done on a four variable H-R neuron model 

which is made to interact with quadratic flux controlled memristor. The 

memductance corresponding to the charge (���is given by the derivative of ( 

with respect to the flux [130,155]. It is appropriate to incorporate the quadratic 

term dependence for the charge [164] and hence the corresponding 
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memductance after scaling will be		.�� + /� + 0. It is observed that 

Memductance can affect the conduction of electrons [133] and this term can act 

as the influencing magnetic flux on membrane potential of the selected neuron.  

4.3.1.1 Time Series behaviour under external non periodic current 

The time series of membrane potential of a neuron is studied under 

different external forcing current and parameter values. Different electric modes 

are observed for different external currents. The other parameters are chosen as � = 0.4, ��=1, ��=0.5,. = 0.1, / = 0.02, 0 = 0.2.	 It is observed that the 

electrical activity selects different discharge modes under suitable parameter 

values. The plots are shown through Figure 4.1(a)-Figure 4.1(c). It is observed 

that the quiescent states[165,166] become broadened for the behaviour of the 

membrane potential as the value of external current increases. Also for higher 

values of external current, the system settles down to oscillation death[130] 

after a short time [Figure 4.1(c)]. 

(a) 
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(b)

 

(c) 

 

Figure 4.1: Variation of action potential with time is plotted for 
���=1.5, 
4.5and 5mA respectively. It is clear from the figure that for high values of 
external current, the system changes from quiescent state to oscillation 
suppression behaviour. 
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The results of simulations are summarized in Table 4. 1. 

Table 4.1: Different types of dynamics of four-variable H-R neuron with 
quadratic flux under external non periodic current 

External non periodic current Dynamics 


���= 1.5 Quiescent state 


���=4.5 Quiescent state broadens 


���=5.5 Oscillation death 

4.3.1.2  Behaviour under external periodic current  

To study the influence of periodic external current on neuronal electrical 

activities, periodic current	
��� = 2	�3�45 is applied to the system and the 

dynamics is analysed. From the plots it is clear that as external periodic current 

increases, the action potential shows enhanced quiescent states for the spiking 

activities and for a higher value of current the neuron system exhibits tonic 

oscillations in contrast to the suppression of activities observed with the 

nonperiodic external current described in the previous section. The states can be 

observed by choosing appropriate parameter valuesas � = 1, �� = 0.9,	 	�� = 0.5, . = 0.4, / = 0.02, 	��	0 = 0.2. 
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(a) 

 

 (b) 
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 (c) 

 

Figure 4.2: Influence of periodic current on membrane potential is shown in 
figure. Figures are plotted for (a) A=0.5, 4=0.02, (b) A=3, 4=0.02 and (c) A=5, 4=0.02 respectively. The behaviour of membrane potential gets changed 
through quiescent spiking states to tonic behaviour as the external periodic 
current becomes high. 

The results are summarized in Table 4.2. 

Table 4.2: Dynamics of for-variable H-R neuron with quadratic flux under 
external periodic current 

External periodic current Dynamics 

A =0.5 ,	4 =0.02 Quiescent state 

A=1.5 ,	4=0.02 Quiescent state broadens 

A=3 ,	4 =0.02 Tonic spiking 

 



4.3.1.3 Bifurcation diagram of Inter Spike i

  To study the electrical 

pattern of spikes. The complex bifurcation structures in H

[151] mainly help to understand the mechanisms

information and its rapid response to stim

Interval (ISI) versus current is important in this respect.

Bifurcation diagram of Inter S

improved H-R neuron model under the influence of quadratic 

as shown in Figure 4.3. Here the pattern of spikes depends on intrinsic property 

of neurons, nature of input to neurons and on network of interactions.

Figure 4.3: Bifurcation diagram
four variable H-R neuron 

 

On Comparing with the study

improved H-R model [152

model with quadratic flux 
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3 Bifurcation diagram of Inter Spike interval versus external current 

To study the electrical behaviour of neurons, it is important to analyse 

The complex bifurcation structures in H-R neuron model 

mainly help to understand the mechanisms used by the neurons 

information and its rapid response to stimuli. So bifurcation plot of Inter

Interval (ISI) versus current is important in this respect. 

Bifurcation diagram of Inter Spike Interval (ISI) versus current of 

R neuron model under the influence of quadratic memristor flux is 

Here the pattern of spikes depends on intrinsic property 

nature of input to neurons and on network of interactions. 

diagram of Inter Spike Interval (ISI) versus current for 
R neuron with quadratic flux controlled memristor 

On Comparing with the study of bifurcation diagram of cubic flux based

52, 157], it is observed that for improved H

model with quadratic flux memristor, bifurcation diagram of Inter S

-R neurons 

nterval versus external current  

it is important to analyse 

R neuron model 

 to encode 

So bifurcation plot of Inter Spike 

versus current of 

emristor flux is 

Here the pattern of spikes depends on intrinsic property 

 

 

versus current for 

cubic flux based 

it is observed that for improved H-R neuron 

Inter Spike 
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Interval (ISI )versus external forcing current is more dense exhibiting the 

possibility of higher number of periods and hence of more complexity. 

4.3.1.4  Lyapunov Exponents versus External current  

The dynamics and hence the anisotropy due to the effect of 

electromagnetic radiation on neurons are observed through Lyapunov Exponent 

plot (Figure 4.4). Here variation of Lyapunov Exponent versus external current 

is plotted which establishes the chaotic nature of the system. 

 

Figure 4.4: Dynamics of Lyapunov Exponent versus parameter for improved 
H-R neuron model with quadratic flux controlled memristor. 

 

4.4  Effect of noise on electromagnetic induction of neurons  

Noise can affect the transmission of periodic signals by nonlinear 

systems. Studies show[167] that external noise sources can influence neuronal 
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systems and hence the important parameters like intensity and correlation time 

of noise can play remarkable role in transmission of signals among the neurons. 

Here noise term is added to the fourth variable of equation (4.1). So the 

fourth term changes to	�� =���� − ��� + 7�5	�. The parameter values are 

selected as given in Section 4.2.The irregularity of electromagnetic radiation                

is represented by Gaussian white noise term7�5�[167]. Here 〈7�5�〉=0,     〈7�5�7�5′�〉= 2:�;�5 − 5′� where :<represents the noise intensity. 

��� = �� − 	��
 + ���� − �
 + 
��� − ������� 
��� = � − ���� − �� 

��
 = ������ − ���� − �
 

��=���� − ��� + 7�5	�  (4.3) 

4.4.1 Influence of Noise under external periodic and non periodic currents 

Noise term is introduced as given in equation (4.3) keeping all the other 

parameters the same. For non periodic current, the variation of membrane 

potential with time exhibits the same dynamics as that of noiseless system 

[Figure 4.1(a)-Figure 4.1(b)]. But the magnitude of external current needed to 

achieve suppression of oscillation gets reduced compared to that of the system 

without noise [Figure 4.1(c)] and also it occurs at an earlier time. The Figure 4.5 

illustrates the dynamics. 
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Figure 4.5: The variation of action potential under non periodic current and 
noise. It is observed that when I>?@ = 4.2	mA and for noise intensity AB=0.1 
suppression of oscillation takes place. The same behaviour persists for higher 
values of noise. 

 

As the current is changed to the periodic one, for amplitude A=1.6 the 

oscillations are resulted in Figure 4.6. Further for the amplitude and frequency 

A=3 and 4=0.02 respectively, the addition of noise leads to tonic type 

behaviour similar to Figure 4.2c instead of quiescent states exhibited in Figure 

4.2(a). So it is important that in contrast to the behaviour of the system in 

noiseless background the effect of noise in the presence of periodic current 

inhibits the quiescent behaviour for low values of amplitude of external current. 

The system exhibits the tonic type oscillation in the presence of noise as time 

progresses. But the presence of noise did not alter the time series plot for the 

values A=0.5,	4=0.02 and A=5, 4=0.02 Figure 4. 2(a) and Figure 4. 2 (c). 
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Figure 4.6: The variation of action potential under the influence periodic 
current and noise. It is observed that when A=1.6,	4=0.02 and noise intensity :�=0.9, the quiescent state later on changes to oscillations. 

 

4.5.  Energy for improved H-R neuron model under the influence of 

quadratic memristor flux. 

Hamilton energy can be calculated on chaotic neural systems with 

different types of attractors[168]. The energy modulation helps to control 

chaos in various systems. The negative feedback in energy can suppress the 

phase space and oscillating behaviours and it in turn can control the chaotic 

and periodic oscillators. So the calculation and analysis of Hamilton energy 

in neuronal chaotic and hyper chaotic systems are relevant in this context. 

Based on the Helmholtz theorem, the Hamilton energy is calculated. It 

helps to discern the energy dependence on the mode selection of the electric 

activities of neuron. Here the statistical Hamilton energy[168] is calculated and 

it can be used to find out the relation among action potential, transition of 

electric activities of neurons in terms of external forcing and energy. According 

to Helmholtz theorem, the dynamical equations for neuron can be treated as 
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velocity vector field [169] and this can include sum of two vector fields. These 

vector fields represent the dissipative and conservative fields. So the system can 

be represented as sum of two sub-vector fields as shown below 

C��� = C*��� +CD���  (4.4) 

So the dynamical system given by equation (4.1) can be represented written as 

E�������
�� F = [ G���, ��, �
, �)+H���, ��, �
, ��]∇K 

         =	CD���, ��, �
, �� + C*���, ��, �
, �� (4.5) 

where���, ��, �
, � ) and H���, ��, �
, �� represent skew symmetric matrix 

which satisfies the Jacobi’s closure condition. 

So CD���, ��, �
�		=					G���, ��, �
, �)∇K 

                         =					
LM
N�� − �
 + 
��� − �� − ���������� − �������� OP

Q
 (4.6) 

and 

	C*���, ��, �
, �� = 	E−	��
 + ���� − ������� + �−��−��
−�
� F (4.7) 

The general hamilton energy function H is defined by the criterion 

	∇KRCD���, ��, �
, ��=0 
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		∇KRC*���, ��, �
, ��		=			*S*�  =		K�  (4.8) 

So energy can be obtained by substituting equation (4.6) and (4.7) in 

equation (4.8) and can be written as 

	��� − �
 + 
��� − �� TST�U+�� − ����� TST�V + ����� − ��� TST�W + ���� TST, = 0 

Solution of above equation can be written as 

K = �	
���
 − 2��� + ����� − ���� + ��� − �
 + 
��� − ��� + ����� (4.9) 

Hence time variation of Hamilton energy is given by 

	K� = 2������� − 2���� + 2����� − ������ + 2��� − �
 + 
��� − ������ − �
� −�� )+2�������                       (4.10) 

On substituting the values of ���, ���, �
� and��  in the above equation and 

rearranging the terms we get derivative of energy as  

K� = 2������� − 	��
 + ���� − �
 + 
��� − ��������� − 2���� − 	��
 + ���� −�
 + 
��� − ��������� + 2����� − ������ − 	��
 + ���� − �
 + 
��� −��������� + 2��� − �
 + 
��� − ���� − ���� − �� − ����� − ��)+��
 −���� + �
�	 (4.11) 

Again on rearranging the terms in equation(4.11) we get  

K� =2���� − 2� + 2����� + 1.6� + 2�����−	��
 + ���� − �������� + �� +2��� − �
 + 
��� − ���−��� − 2��� − �
 + 
��� − �� + �−��
� −2��� − �
 + 
��� − ���−�
�� = ∇KRC* (4.12) 
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The energy function in neuron shows distinct dependence on external 

forcing current	
��� and the action potential �� and thus discharge states are 

obtained. So the Hamilton energy gives the fluctuation of energy function 

associated with external forcing. This explains why the neuron can give 

appropriate response to external forcing which supplies continuous energy for 

neurons. 

Numerical analysis of system is also done (Figure 4.7). The variation of 

Hamilton energy with external forcing current shows discontinuity in 

behaviours [170]. 

(a) 
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(b) 

 

Figure 4.7: (a) External current variation with time (b)Variation of average of 
Hamilton energy with respect to current. Here low value of current gives 
quiescent state and high value of current leads to tonic type transitions 

 

The plot for the variation of average value of Hamilton energy with 

current shows a plateau for low values of current which explains the presence of 

the quiescent state[169,170] in Figure 4.2a. For increased current its behaviour 

get changed through its irregularity and for values high values of external 

current high frequency tonic type transitions are obtained. To be specific, when 

amplitude of external current increases beyond 5mA, the Hamilton energy 

increases linearly and hence the appearance of tonic spiking described in section 

4.2.1 is justified. 
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4.6.  Synchronization under electromagnetic induction and noise 

4.6.1 Quadratic flux controlled memristor for coupled neurons 

It is possible to control the activity of neurons by magnetic forces which 

in turn control the flow of ions into specifically targeted cells[171].Here 

coupling is introduced to modified four variable H-R neuron models where 

quadratic flux controlled memristor based electromagnetic radiation is present. 

��� = �� − 	��
 + ���� − �
 + 
��� − �������� + X��� − ��� 
��� = � − ���� − �� 

��
 = ������ − ���� − �
 

��=���� − ���� + 7�5� 
��� = �� − 	��
 + ���� − � + 
��� − �������� + X��� − ��� 
��� = � − ���� − �� 

�� = ������ − �<�� − �� 

��=���� − ����+7�5�  (4.13) 

Here ��, ��, �
and 
��� represent the membrane potential, slow current 

associated with the recovery variable, adaptation current term and external 

forcing current respectively for the first neuron. Similarly	��, ��,	and �  

represent the corresponding variables for the second neuron. The parameter 

values are selected as a=1, b=3, c=1, d=5, r=0.006, s=4, ��=-1.6. 

The memristance of quadratic flux controlled memristor is represented 

by ����= .�� + /� + 0. Since this term is associated with the memory it is 
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used for estimating the effect of feedback regulation on membrane potential 

when corresponding magnetic flux is changed. The term	X represents the 

coupling intensity between the neurons. Here the irregularity of electromagnetic 

radiation is represented by Gaussian white noise term 7�5�. It is found that the 

synchronization degree depends on the coupling intensity and the intensity of 

external electromagnetic radiation. 

Time series plots of membrane potentials (��		��	��) for coupled H-R 

neurons (Figure 4.8) confirm the synchronization pattern. Here the parameter 

values are�=0.4, ��=0.8, ��=0.5,	:<=0.6,	.=0.02,	/=0.1, 0=0.1, X=1. 

Depending upon the parameter values and external forcing current 
���, various 

synchronization phenomena are observed. As the value of external current 

increases the dynamical behaviours such as periodic, chaotic and tonic type 

synchronizations are observed. 

(a) 
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(b) 

  

(c) 
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 (d) 

  

Figure 4.8: Time series for membrane potentials for the two coupled neurons 
are plotted for different external forcing current. For 
���=1.5, 2.5, 3.5, and 4.5 
mA the synchronization behaviour of the system of neurons changes through 
periodic, chaotic and finally through tonic type synchronization. 

 

In a similar way by keeping the external current fixed as	
��� =3.5 mA 

and changing the coupling parameter and noise intensity as (a)g=0, D=0, 

(b)g=1, D=0 and (c) g=1 and D=0.9 various patterns are observed. When there 

is no influence of coupling (g=0) and with no noise intensity (D=0), the two 

different neurons behave independently as it must be[Figure 4.9(a)]. The 

behaviour is retained with the case where the noise intensity is raised to 

maximum [same behaviour as that of Figure 4.9(a)]. But as the two neurons are 

coupled, for high value of coupling strength and in absence of noise intensity, 

synchronization of the system takes place. [Figure 4.9(b)]. Finally quiescent 

state and subsequent suppression of oscillation effects are observed for 

appropriate high values of noise intensity and coupling strength [Figure 4.9(c)]. 
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(a) 

  

(b) 
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(c)  

 

Figure 4.9: Time series for membrane potentials are plotted for fixed external 
forcing current. For 
���=3.5 mA the synchronization behaviour of the system of 
neurons (Figure 9b) is achieved with control parameter values g=1, D=0 and the 
system attains oscillation death state (Figure. 9c) for higher coupling (g=1 and 
D=0.9) in the presence of high noise. 

 

4.6.1.1 Transverse Lyapunov plot for quadratic flux based memristor 

The stability of synchronization can be quantified by master stability 

approach [172]. The synchronization is stable if the master stability function is 

negative at each of transverse eigenvalues (Figure 4.10). 
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Figure 4.10: The TLE of coupled improved H-R neuron model with quadratic 
flux induction 

 

The largest TLE crosses zero and becomes negative indicating 

synchronized state and its stability. 

4.7 Influence of exponential flux controlled memristor on coupled neurons 

The work is extended to examine neuron dynamics under the influence 

of exponential flux controlled memristor where the neurons are allowed to 

interact with each other. 

��� = �� − 	��
 + ���� − �
 + 
��� − �������� + X��� − ��� 

��� = � − ���� − �� 

��
 = ������ − ���� − �
 

��=���� − ���� + 7�5� 



Influence of Memristor and Noise on H-R neurons 

139 

��� = �� − 	��
 + ���� − � + 
��� − �������� + X��� − ��� 
��� = � − ���� − �� 

�� = ������ − ���� − �� 

	�� =���� − ����+7�5� (4.14) 

The parameter values are selected as a=1, b=3, c=1, d=5, r=0.006, s=4, 	�� = 0.9,	��=0.5. 

The exponential flux controlled memristor[173] is represented as 

(��� = �
�	�YU, − 1� (4.15) 

Where 	 > 1and	�
�� > 0. The Memductance of the function is                          ���� = 	�YU[�
��\�	�. Here 	�= e, �� = 50 log�0.5� 	��	�
=10. 

As the values of external current changes, the synchronization pattern 

shows various patterns as depicted in Figure 4.11 [Figure 4.11(a)-Figure 

4.11(c)]. When the magnitude of external forcing current increases, the 

synchronization pattern shows tonic oscillations, which finally leads to 

oscillation death state with appropriate value of external forcing current. 

  



Chapter 4 

140 

(a) 

  

 

(b) 
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(c) 

 

Figure 4.11: Time series for membrane potentials are plotted for different 
external forcing current 
���=2.5mA,	
���=3.5mA and 
���=4.5mA. As 
magnitude of external forcing current increases, the synchronization pattern 
changes to oscillation death state. 

 

On comparing with the dynamics corresponding to quadratic flux 

controlled memristor, it is interesting to find that for same coupling strength and 

for same noise intensity (X = 1	and	:<=0.6), instead of the tonic behaviour, the 

system sets into oscillation death state for higher magnitude of external forcing 

current in the case of exponential flux controlled system. 

Further by keeping the external current fixed at	
��� =3.5 and changing 

the coupling parameter and noise intensity terms as (a)g=0.01, D=0.9(b) g=0.5, 

D=1 and (c) g=1, D=0.3 various patterns are obtained. It is observed that for 

low values of coupling strength and noise intensity the system exhibits anti 

phase state [Figure 4.12(a)]. The behaviour is preserved as noise intensity is 
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stepped up [the pattern is same as that of Figure 4.12(a)]. As g is increased to 

0.5 keeping the noise intensity as 1, the behaviour of membrane potential gets 

changed to chaotic synchronized state [Figure 4.12(b)]. But the decrease in 

intensity of noise to D=0.3, at high coupling strength causes the time series 

dynamics to change into that of periodic one [Figure 4.12(c)]. 

(a) 

  

(b) 
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(c) 

 

Figure 4.12: Time series for membrane potentials are plotted for different 
coupling strength and noise intensity. Various patterns such as (a) antiphase 
(g=0.01, D=0.9), (b) chaotic (g=0.5, D=1) and (c) periodic (g=1, D=0.3) 
behavior are observed for appropriate values of noise intensity and coupling 
strength. 

 

Depending upon the low and high values of noise and coupling 

parameters anti phase state of the system gives way to chaotic and then to 

periodic type synchronization patterns. 

On comparing with the synchronized and oscillation death states found 

in coupled neurons with quadratic flux based memristor, the system with 

exponential flux based memristor exhibits chaotic and periodic type 

synchronization state. 
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4.8.  Discussions and concluding remarks 

The essence of brain function consists in how the information is being 

processed, transferred and stored. The Neuro Electro Dynamic model 

(NED)[174] is an emerging field which describes the intrinsic computational 

processes by the dynamics and interaction of charges. 

Various studies [130,152,155,165] had been carried out on the effect of 

electromagnetic induction on H-R neuron under the influence of cubic flux 

controlled memristor. In the present work influence of quadratic flux and 

exponential flux based inductions in four-variable H-R neuron model is studied. 

In the first part we analysed the different modes of electrical activities in single 

neuron under quadratic memristive term. The system behaviour is studied under 

the influence of external periodic and non periodic current. It is observed that 

for nonperiodic current, as the value of external current increases the quiescent 

states[166]become broadened and also for higher values of external current, the 

system settles down to oscillation death state. However for the periodic current 

the action potential shows enhanced quiescent states for the spiking activities 

and for the higher current the neuron exhibits tonic oscillations in contrast to the 

suppression of activities observed in non periodic case. So in quadratic flux 

based mode transition, when compared to cubic flux memristor [130,152,157] 

the suppression of oscillations is an additional feature.  

The influence of control parameter like noise on the neurons is also 

subjected to study. It is found that when noise is added to the system, the 

oscillation death is achieved for smaller magnitude of external current. Also the 

presence of noise leads to the inhibition of quiescent activity under periodic 

current. The Lyapunov Exponents are plotted which confirm irregularity in the 

neuron dynamics. 
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Energy is calculated in terms of Hamilton energy to understand the 

neuron response to external forcing current and action potential. It is observed 

that the plot for Hamilton energy versus current shows discontinuity in 

behaviour. There is a plateau for low values of current which explains the 

presence of the quiescent states and as current increases tonic behaviour is 

resulted in. Bifurcation of Inter Spike Interval (ISI) versus current is also plotted 

and it shows denser pattern as compared with that of cubic flux based 

electromagnetic induction. 

The synchrozation of coupled neurons also is the focus of study. Under 

the influence of quadratic flux and noise term the system changes through 

periodic, chaotic and tonic type synchronization as the current is increased. The 

variation of noise intensity and coupling strength leads to oscillation death of 

these coupled neurons under constant current. Transverse Lyapunov Exponent 

plot gives a picture of the stability of the coupled system. The effect of 

exponential flux controlled memristor based electromagnetic induction on 

neurons when coupledis also examined. With exponential flux controlled 

memristor the activity changes to tonic type synchronization with increase in 

forcing current. Here the synchronization pattern displays oscillation death, 

antiphase, periodic and chaotic transitions. 

The work gives a pathway to understand electromagnetic flux influence 

on the overall activity of neurons. The activity of neurons is examined with 

quadratic and exponential flux based memristor. Brain produces an 

electromagnetic field with specific characteristics. Also Electromagnetic waves 

are produced due to artificial nano-synapses. The memristor as magnetic flux 

can also influence neuromorphic quantum computation. 

The effect of field coupling under the influence of Lẻvy noise on the 

electromagnetic properties of neuron with quadratic flux is the future focus of 
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study. In the presence of field coupling and non-Gaussian type noise like Lẻvy 

noise studies may exhibit improved electrical activity of neuronal network with 

information exchange in the absence of the synapse. 
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Chapter 5 

Electromagnetic induction on neurons through field                                    
coupling and Memristor 

 

5.1  Introduction 

Synapse coupling is considered as the most important bridge to 

exchange signals between neurons. It is possible to analyse the synchronization 

and pattern selection in neural network under chemical or electric synapse 

coupling. The possibilities of linear and nonlinear synapse couplings on H-R 

neuron model[132] are already discussed in chapter 3. It helps to characterize 

neuronal interactions among the neuron models. 

In the present chapter, the effect of field coupling on the electromagnetic 

induction of neurons is examined. An improved H-R neuron model with cubic 

flux controlled memristor is selected to analyze the kinetics of neuron. Each 

neuron is considered as a charged body. It can be controlled by the field 

triggered by the other neurons. It is observed that under field coupling 

excitability of neurons can be changed. Field coupling can benefit signal 

exchange between neurons even if synapse is absent. 

Neuron is the basic unit in neuronal network and its electrical activities 

show distinct nonlinear properties. Various biological neuron models and their 

modified versions can be used for recognizing and understanding the electrical 

activities in neurons[67, 68, 193, 194]. External forcing can induce transition in 

electrical activities namely quiescent state to spiking, bursting and even chaotic 

states in neurons [194]. 

The normal function of neural networks always depends on a delicate 

balance between excitatory and inhibitory synaptic inputs[194-196]. It is 
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thought that excitatory synaptic inputs are helpful to trigger the electrical 

activities of neurons, while inhibitory synaptic inputs can calm down the firing 

in electrical activities. Many evidences confirmed that inhibitory synapse can 

enhance neural firing pattern or enhance synchronization degree of coupled 

neurons and of neuronal network[197-199]. It is also observed that some 

intermediary neurons have autapse connection[200], where the synapse 

connects to neuron or soma via a closed loop. The modulation of autapse 

driving can cause a time-delayed feedback on the membrane potential. It can 

enhance the self-adaption of neuron to external stimuli and can regulate the 

collective behaviours of neuronal network. Also effect of autapse with time 

delay can be used to describe the effect of memory in neuron[200,201]. 

For the neuron and biological cell, the electrical activities also can be 

changed due to the electromagnetic induction. Here the motion of charged 

particle can be controlled by electromagnetic field and the spatial distribution of 

charge particles become complex when these charge particles are exposed to 

external electromagnetic field. The electromagnetic radiation on neuronal 

electrical activity can affect energy metabolism, genomic responses, 

neurotransmitter balance, cognitive function and various brain diseases 

[194,202]. Lisi et al. [203] investigated the effect of electromagnetic radiations 

at a frequency of 50 Hz on the development of cerebellar granule neurons 

(CGN). Masuda et al. [204] presented experimental verification and discussion 

about effects of 915 MHz electromagnetic field radiation in TEM cell on the 

blood–brain barrier and neurons in the rat brain. 

It is observed that multiple modes of electrical activities[205] can be 

induced by electromagnetic radiation. These results are consistent with 

biological experiments. Recent studies based on a new cardiac tissue 

model[206] explained the potential mechanism for heart disease induced by 
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electromagnetic radiation. The synchronization behaviour of electrical activities 

of neurons can be examined when neurons are exposed to noise like 

electromagnetic radiation [207, 208]. 

As discussed in chapter 3, linear coupling like indirect synaptic 

coupling and cubic feedback coupling etc. exhibits properties like 

synchronization, amplitude death and anti synchronization. Different memristor 

based nonlinear couplings[209] exhibit tonic spiking, bursting, and oscillation 

death and near death spike etc. and these richdynamical behaviours have much 

importance in the study of brain cells.  

Synaptic coupling and field coupling have distinct features. During 

chemical synaptic transmission, neurotransmitter may initiate an electrical 

response. There is no intercellular continuity, thus no direct flow of current 

from presynaptic to postsynaptic cell. Here action potential triggers the 

presynaptic neuron to release neurotransmitters. For an electrical synapse gap 

junctions between pre synaptic and postsynaptic membranes allow current to 

flow passively through intercellular channels[210]. This current flow changes 

postsynaptic membrane potential and causes the initiation of postsynaptic action 

potentials.  

Recent researches showed that the field coupling[211] between neurons 

can also give a new insight to understand the collective behaviours in neuronal 

networks. Here coupling of adjacent nerve fibers is caused by the exchange of 

ions between the cells. Here extracellular field feedbacks on to the electrical 

potential across neuronal coupling. Electrical conduction of nerve impulse 

occurs without mediation of neurotransmitter and is independent of synapse. 

Spiking of an active neuron is accompanied by ion flow across the membrane. 

This may cause an alteration of the electric field at the extracellular space which 

affect the excitability of nearby inactive neurons. The ephatic or field coupling 
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depends on the distance between two neurons. A Study of the mouse barrel 

cortex has reported that during strongly synchronized spiking activity (epileptic 

discharges or strong evoked responses), spiking could be effectively induced by 

localized extracellular currents[211]. 

This chapter examines the effect of field coupling in H-R neurons. 

Studies on biological Hodgkin–Huxley neuron model were helpful to 

understand the occurrence mechanism of neuronal systems induced by 

electromagnetic radiation[209]. Researches based on collective responses in 

electrical activities of neurons under field coupling were also reported[210]. 

The contribution of field coupling from each neuron can be analysed by 

introducing appropriate weight dependent on the position distance between two 

neurons[209]. Such studies have confirmed that the synchronization degree is 

much dependent on the coupling intensity. It is possible to modulate the 

synchronization or pattern selection of network connected with gap junction by 

field coupling [194,205,206]. 

In the proceeding sections, the effect of electromagnetic induction on 

neurons through field coupling and memristor is analysed. Here the four 

variable modified Hindmarsh -Rose neuron model[68,205] is selected. It is 

observed that time-varying intercellular and extracellular ion concentration can 

induce electromagnetic induction and this effect can be described by using 

magnetic flux according to the law of electromagnetic induction. The induced 

current from electromagnetic induction can modulate the membrane potential 

via feedback by using cubic flux controlled memristor. Memductance is 

dependent on the external stimuli and thus memory can be illustrated[108]. 

Field coupling is also introduced to understand the collective behaviour and 

synchronization problems[194]. Different external stimuli are applied to study 

the effect of field superposition on neuronal discharges. It is possible to analyse 



Electromagnetic induction on neurons through field coupling and Memristor 

153 

the spatiotemporal evolution of membrane potentials for different external 

stimulus current and the corresponding dynamics are found to be changed. 

For isolated neurons, as the external forcing current increases, the 

system shows diversity in behaviour under low coupling. Oscillation 

suppression behaviour for low current is changed into tonic spiking on increase 

of current. For coupled system the increase of the intensity of external stimuli 

leads to enhancement of the synchronization of neurons. Similarly for high 

coupling strength, as intensity of external stimuli is improved, suppression of 

oscillations is resulted in. 

For the neuron networks the neuron oscillators show incoherent as well 

as synchronization behaviour for various coupling strengths. This is examined 

for the collective behaviour of 300 H-R neurons. 

Stability of synchronization is examined through Transverse Lyapunov 

Plot. The controller for the system is developed[171] and the activation–

inactivation dynamics of fast ion channel for weak and strong coupling is 

analyzed. This is done by varying the value of coupling parameter. 

In the improved H-R neuronal system, each neuron can set 

electromagnetic field due to the fluctuation of ion concentration and exchange 

of ion current through the channels embedded into the membrane. Here each 

neuron is exposed to the integrated electromagnetic field contributed by other 

neurons according to superposition principle of field. Simulations confirmed 

that under field coupling the electrical activities in neurons show certain 

diversity in amplitude and the rhythm and hence can carry more important 

information because synchronization can be associated with memory[171]. 
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5.2  Model and scheme 

The dynamical equations for neuron network can be described by field 

coupling as follows 

���
��

= ����, 	
 

��


��
= ��� + ��∑ �� − ��
�

���   (5.1) 

Where the subscript i used in equation (5.1) describes ith neuron in the 

network without synapse connection[194]. ∑ �� − ��	
�
��� represents the field and 

magnetic contribution of other neurons to the ith neuron. Here	��and	��denotes 

the membrane potential and magnetic flux for neurons respectively. The 

coupling intensity is represented by � and p is a parameter which characterizes 

H-R the neuron. k is the induction coefficient associated with the medium and  f 

(x, p) represents the local kinetics of neuron model. 

Schematic diagram of ephatic or field coupling [194]is shown below. 

 

Figure 5.1: Spiking of an active neuron is accompanied by ion flow across the 
membrane. This results in alteration of the electric field at the extracellular 
space and in change the excitability of nearby inactive neurons (adapted from 
[194,206]). 
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The Hindmarsh-Rose(H-R) neuron model[68] mainly used to describe 

the nonlinear dynamic characteristics of neurons. The dynamical kinetics can be 

understand by the ordinary differential equations (ODE). It is composed of three 

variables. Here memristor is used as coupling term between membrane potential 

and magnetic flux. Hence the induction field and action potential can be bridged 

in physical view. 

In this work, an improved H-R neuron model is selected which 

incorporate the magnetic flux as fourth variable. Based on an improved neuron 

model, the effect of field coupling on electromagnetic induction is analysed and 

the modulation of magnetic flux on membrane potential can be understand by 

using cubic flux controlled memristor coupling. Each neuron regarded as a non 

uniform charged body and the corresponding distribution of the charged ions 

are not in a uniform way. The contribution to the field distribution from each 

neuron could be different in biological and nervous systems. So appropriate 

weight can be considered in the neuronal network [202]. 

A chain distribution for Hindmarsh–Rose neuron with field coupling is 

given by 

���� = ��� − ����
� + ����

� − ��� + � !� − �"���
��� 

���� = # − ����
� − ��� 

���� = $%&���� − �'
( − ��� 

�� = ����� + ��∑ �� − ��
 �
���  (5.2) 

The membrane potential, slow current associated with recovery variable 

and adaption current are represented by ��, �� �)� ��respectively, where the 

memductance ρ(*�) is cubic flux controlled memristor term. The parameter 
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values are selected as a=1, b=3, c=1, d=5, r=0.006, s=4,	�'= -1.6. Here 

	����	denotes the changes in magnetic flux induced by membrane potential. 

Hence the interaction between membrane potential and magnetic flux are 

represented by the variables k and k1. Relation between memristor magnetic 

flux, membrane potential and current is shown as follows. 

+ = �,��


��
= �,��


��

��

��
= "��
- = �"��
��       (5.3) 

5.3  Simulation Results  

The spatiotemporal evolution of membrane potentials is calculated for 

dynamical analysis for different node positions when external stimulus current 

is changed. In order to illustrate the effect of field superposition on neuronal 

discharges, different external stimuli Iext are applied. The excitability of neuron 

can be changed in response to the external forcing current. This is well 

understood through numerical studies. Collective responses in electrical 

activities of H-R neurons under field coupling and stability of synchronization 

through Transverse Lyapunov Exponent are also analysed. 

5.3.1 Modes of electrical activity of isolated H-R neuron under field 

coupling  

Sampled time series analysis are done using Matlab platform for the 

isolated neuron [194] system by changing control parameters. As the intensity 

of external current � !� increases the dynamics of single H-R neuron model 

under field coupling shows distinct behaviours. For the value of external current 

� !� =0.5 mA the neuron system shows the suppression of activity. But as the 

current changes to 1.5 mA its activity gets changed to sudden spiking 

behaviour. For higher values of external current it shows a tonic or continuous 

spiking activity. Figure 5.2 shows the different dynamics of the system. Larger 
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external stimuli are much helpful to excite neurons. By increasing the intensity 

of external stimuli the suppression of oscillatons are modified to spiking states. 

Hence it is shown that the field coupling[202] along with the magnetic flux of 

memristor can control the mode transitions. 

(a) 

 

(b) 
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(c) 

 

Figure 5.2: Time series plot of membrane potentials for coupling stength 
g=0.5(a) Oscillation suppression of neuron under � !�=0.5. (b) spiking activity 
� !�=1.5 (c) tonic spiking for	� !�=3.5 

 

5.3.2.  Synchronization behaviour of neurons under field coupling 

Here the two improved H-R neurons are selected and its dynamics is 

analysed for coupled neurons under field coupling. The corresponding mode 

transitions of electrical activities under electromagnetic induction due to field 

coupling are analysed[194,205,209]. For low coupling strength (g=0.3), the 

system shows distinct dynamics such as suppression of activity, spiking and 

death of neuron, antiphase state and chimera state etc. under various external 

forcing currents (Figure 5.3). 
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(a) 

 

 

(b) 
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(c) 

 

 (d) 

 

Figure 5.3: The time series analysis of coupled neuron for coupling strength 
g=0.6.(a) Two neurons are in oscillation death state for	� !�=0.5.(b) For the 
current � !�=1.5, the spiking of one neuron and death of other one takes place. 
(c) Antiphase synchronization/desynchronization observed for � !�=2.5(d) 
chimera states occurs at	� !�=3.5  
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Further the study is extended with high value of coupling strength (g=1). 

The system dynamics exhibits quiescent modes, bursting, oscillation death as 

the values of external current increases. The result is quite different comparared 

to that of low coupling intensity. For low coupling strength the oscillation death 

occurs under low values of external stimulating current. But as coupling 

strength increases suppression of oscillation may takes place even under high 

stimulating current. Hence we can reign the dynamic behaviours under field 

coupling by selecting appropriate control parameters Figure 5.4. 

(a) 
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(b) 

 

(c)  

 

Figure 5.4: The time series analysis of coupled neuron for coupling strength 
g=1 (a) Two neurons are in quiescent state for	� !�=0.5 (b) For the current 
� !�=2.5, the quiescent states gets broadened (c) oscillation suppression occurs 
at 	� !�=3.5. 
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The field interaction between each neuron can change discharge period 

of a neuron. The field coupling can drive neurons to give appropriate response 

in time. Here the synchronization degree varies with external forcing current. 

5.4.  Collective responses in electrical activities of H-R neurons under 

field coupling. 

The influence of field coupling on the collective behaviours in neuronal 

network connected by electric synapse[200,210,171] between adjacent neurons 

is also analysed. 

Transition to synchronized state with increase in coupling strength is 

observed for 300 H-R neurons. In Figure 5.5, i denotes the oscillator (neuron) 

number and �� denotes the membrane potential of ith neuron. Figurers (a) and 

(b) represents the dynamics of 300 H-R neurons for g = 0 . 1 (desynchrony) and 

1.0 (complete synchrony) respectively. 

(a) 
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(b) 

 

Figure 5.5: Transition from desynchronized state(incoherent) to complete 
synchrony with increase in coupling strength, where i denotes the oscillator 
number and �� denotes the membrane potential of i th neuron. (a) and (b) 
represents the dynamics of 300 H-R neurons for g = 0. 1 (desynchrony) and 1.0 
(complete synchrony)  respectively. 

 

5.5.  Analysis with control inputs. 

The control law serves as a bridge to estimate the unknown parameters 

of the model[210,211,171]. The analysis based on control law can indicate 

disease condition in the case of biological neurons. It can be used as a bridge 

network in between the abnormal and normal network. The method of deriving 

control laws for synchronization can be used in many complex networks, such 

as electronic circuits, computer networks and may be used as a potential method 

for adjusting neuronal rhythm to cure mental disorders in future. In the 

following section the synchronization condition for the model including the 
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control inputs are developed. Control inputs can be analysed by Lyapunov 

function method. The dynamics of system with control input can be written as 

���� = ��� − ����
� + ����

� − ��� + � !� − �"��.�
���+/�+, ���
 

���� = # − ����
� − ���+	/�+, ���
 

���� = $%&���� − �'
( − ���+	/�+, ���
 

	�.0� = ����� + ��∑ �.� − �.�
 + 	/�+, �.�
�
���   (5.4) 

The synchronization errors are defined as  

1�+, ���
 = ��2� − ���,  	1�+, ���
 = ��2� − ���,  	1�+, ���
 = ��2� − ���, 

	1�+, �.�
 = �.2� − �.�  (5.5) 

The error dynamics are taken the form 

1��+, ���
=	1�+, ���
 − ����2� − ���
� + ����2� − ���
� − ���2� − ���
 −

																			�"1�+, ���
 − /�+, ���
	 

1��+, ���
 =−����2� − ���
� − 1�+, ���
 − /�+, ���) 

1��+, ���
=	$&	���2� − ���
 − 1�+, ���
 − /�+, ���
 

1��+, �.�
=�����2� − ���
 − �	1�+, �.�
 − /�+, �.�
  (5.6) 

Considering the Lyapunov function using difference variable we get, 

- = �

�
∑ 1�+, ���
� + 1�+, ���
��3�
�4� + 1�+, ���
� + 1�+, �.�
� (5.7) 
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        Here + = 1…………………) − 1 (5.8) 

The controllers are chosen to ensure that the time derivative of 

Lyapunov function is negative definite. The errors converge to zero as	� → ∞, 

this leads to asymptotically stable synchronization manifold. 

So controllers are chosen as 

/�+, ���
 = 1�+, ���
����2� − ���
� + ����2� − ���
� − ���2� − ���


− �"1�+, ���
 

	/�+, ���)=−����2� − ���
� + 1�+, ���
 

/�+, ���
 = 	$&	���2� − ���
 − 1�+, ���
 

/�+, �.�
 = �����2� − ���
 − 	1�+, �.�
 (5.9) 

Then 

-� = −�∑ 1�+, �.�
�
23�
�4�              (5.10) 

Hence H-R neuron network with field coupling analysed with controller 

shows that Lyapunov function derivative is negative. 

5.6.  Stability of Synchronization 

The stability of synchronization of the selected model can be quantified 

using the master stability approach developed by Pecora and Carroll [211] . The 

master stability function allows to establish whether any linear coupling 
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arrangement will produce stable synchronous dynamics. It also helps to reveal 

the desynchronization bifurcation mode which occur when the coupling scheme 

or strength changes. The synchronization is stable if the master stability 

function is negative for each of the transverse eigenvalues. The analytical 

expressions for estimating the synchronization threshold for diffusively coupled 

continuous and discrete time chaotic systems have been reported earlier 

[211,212]. 

For the stability of synchronization, complete stable synchronization 

occurs,when the difference between neural oscillator coordinates �� = �2 − ��, 

	9� = 92 − 9� and :� = :2 − :� vanish in the limit of t→ ∞ and there exists a 

synchronous solution	;���
=	;���
=………….=	;2��
.Where	;���
=(��, ,9�,:�). 

Hence the stability of equations for perturbations transverse to synchronization 

corresponding to given equation can be calculated. 

The activation–inactivation dynamics of fast ion channel for coupling 

has been analyzed by varying the value of coupling strength from 0 to 5. The 

minimal condition for the stability of synchronized state[211,171] is the 

negativeness of the Transverse Lyapunov Exponents (TLEs) associated with 

equation (5.2). 
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Figure 5.6: The TLEs of coupled HR neural network. (a) Coupling strength is 
plotted along x axis and TLE along y axis. The largest (blue color) TLE (λ⊥ 1) 
become positive under coupling strength 1.1<g<2.7. 

 

Variation of two largest TLEs (λ⊥ 1 and λ⊥ 2) with increase in g are 

shown in Figure 5.6. As the coupling strength is increased, the largest TLE              

(λ⊥ 1) increases initially, reaches a peak, and then decreases. The largest TLE 

crosses zero and become negative indicating a transition from desynchronized 

state to complete synchrony. 

5.7  Summary  

In the complex physical and biological conditions (for example, noise 

driving and electromagnetic radiation), it is very difficult to achieve the 

complete synchronization between neurons [194,196,212,213]. But the phase 

synchronization or rhythms are available in such cases. In the work presented 

here it is observed that magnetic coupling is an effective way to realize 

synchronization. The effect of field coupling on the electromagnetic induction is 
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examined. The corresponding modes of electrical activities with cubic flux 

controlled memristor are examined by finding the influence of the magnetic flux 

on membrane potential. For isolated and coupled neurons, different mode 

transitions in electrical activities can be analysed by increasing the intensity of 

field coupling. Under low coupling strengt has the external forcing current 

increases the system shows diversity in behaviour. Various dynamics such as 

oscillation death, tonic spiking, desynchronization and chimera state etc. are 

resulted in. As coupling strength increases, dynamics of spiking, bursting and 

oscillation suppressions etc. are resulted in. Hence under high coupling strength 

oscillation suppression can be observed for high stimulating current. It is 

observed that for network of 300 H-R neurons, the neuron oscillators show 

incoherent as well as synchronization behaviour. Stability of system is 

confirmed by negativeness of Transverse Lyapunov Exponent plot. 

The mode in electrical activities can be controlled by field coupling. The 

excitability of neuron can varies with the external forcing current, and larger 

external stimuli are much helpful to excite neurons. This is well understood 

through the numerical studies. So present studies gives ideas to understand the 

signal encoding and exchange when synapse coupling is absent. 
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Chapter 6 

Dynamics of Josephson Junction model with Memristor and H-R neuron 

6.1 Introduction 

In Josephson Junction the quantum-mechanical effect is responsible to 

produce a non-ohmic current between two superconductors separated by an 

insulator. Complex chaotic behaviours can be simulated in the Josephson 

Junction (JJ) circuits when it is coupled with other electric elements such as 

resistance and inductance coil [214]. 

The superconducting circuits with Josephson Junctions can model 

biologically realistic neurons. Josephson Junction neurons can mimic many 

characteristic behaviour of biological neurons with respect to action potentials, 

refractory periods and firing thresholds [163]. Action potential is of the order of 

picosecond roughly a billion times shorter than that of other neuron models   

(H-H neuron, FHN neuron etc.)[164]. The individual junctions behave like ion 

channels. Josephson Junctions are easy to design and inexpensive to fabricate. It 

is easy to fabricate up to 20,000 junctions using rapid single flux quantum 

technology (100 GHz). Here a Single chip can model 10000 neurons. Hence it 

can be used for larger brain regions. Shorter transit time and less power 

dissipation is an added advantage of the model. It is possible to model single 

neurons with two Josephson Junctions [214,215].  

Single flux quantum technology is used for neuromorphic computing. 

When operating in a low current regime near critical current, Josephson 

Junctions naturally behave like spiking devices[214]. It is possible to compare 

numerical solutions of the voltage and current equations for the Josephson 

circuit with simulations of other well-known biological models. The results 
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exhibit striking quantitative similarities between the models. Josephson Junction 

can operate in parallel and a single Josephson neuron in isolation can run as 

quickly as a thousand fully interconnected ones. It is faster than computer 

simulations of any other neuron model and that of actual biological ones. 

The study of dynamics of Josephson Junction also shows potential 

applications in many fields such as secure communication and the study of high 

frequency of circuit[215]. The memristor coupled Josephson Junction circuit is 

effective to apply in the encryption and decryption of an image[216]. The 

present studies could be useful to construct a network of neuronal circuits in a 

large scale so that the collective behaviours of neurons could be detected and 

investigated. 

The effect of electromagnetic induction in Josephson Junction circuit 

model can be analysed by introducing the magnetic flux variable into the model. 

Here memristor[218] is used to realize feedback between magnetic flux and 

Junction potential. When memristor is used in circuits the nonlinearity of 

electric circuit is enhanced. Memristor can describe the effect of memory and 

can bridge the output voltage and magnetic flux by generating induction current. 

Using improved model with memristor, the different modes of electrical 

activities can be detected which is consistent with biological experiments            

[219-221]. Wu and et al. [220,221] imposed phase noise on the improved 

neuron. A time-varying electromagnetic field was induced to trigger different 

modes of electrical activities and coherent resonance behaviour was 

observed[220]. Studies[221-223] showed that the chaotic system coupled by 

flux controlled memristor can enhance the communication security and 

nonlinear properties. 

Recent studies[222] proposed a new nonlinear logarithmic model to 

characterize memristor and an effective memristor emulator has been designed. 
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This enables the relationship between memductance and flux to be expressed by 

an inverse proportional function. It is significant to focus on the application and 

analysis of this model in neuromorphic computing. 

It is possible to simulate the neuronal electrical activity using the 

biological neuron model and Josephson Junction neuron model. They can be 

coupled together to mimic electrical and chemical synapses[214-217]. It helps 

to understand the dynamics of collections of neurons. It is observed that the 

biological neuron models, such as Hodgkin–Huxley (H-H), Hindmarsh–Rose 

(H-R), Morris–Lecar (M-L) can be used to measure and simulate the electric 

activities of neurons[219, 222, 223, 68, 69, 67]. The time series of membrane 

potential variables can be periodical or chaotic in different parameter regions. 

Recent studies [222-229] showed that resistive-capactive-inductive-shunted 

Josephson Junction(RCLSJ) model could be controlled to reproduce some 

electric activities of FitzHugh–Nagumo neuron model. The larger gain 

coefficients were reported to be active to speed up the process of 

synchronization. Studies [223,224] showed that the power consumption of 

controller is independent of the selection of gain coefficients. Xinyi Wu and               

et al. [221] confirmed electric activities in Josephson Junction coupled resonator 

and in Morris–Lecar neuron. It is possible to design electric circuits using the 

Personal Simulation Program with Integrated Circuit Emphasis (PSPICE)[230]. 

The parameter regions were detected to generate spiking and bursting for 

neurons and these were consistent with the numerical results. It is possible to 

detect the excitability of the neuron model with Bifurcation diagrams for Inter 

Spike Interval (ISI) vs.forcing current [222]. 

In this chapter the dynamics of Josephson Junction is analysed with 

different memristors. Study on electromagnetic induction in Josephson Junction 

with flux controlled memristor shows fast periodical and double periodical 
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spiking. The studies indicate that the dynamical properties of Junction potential 

depend on the coupling intensity, the voltage and the magnetic flux. Also 

numerical studies of Josephson Junction with logarithmic memristor show 

periodic spiking and suppression of oscillation. In both cases chaotic nature of 

system is predicted by Lyapunov Exponent versus gain plot. These behaviours 

are quite different from that of cubic flux controlled memristor[219, 208] where 

the periodical, multi-periodical and chaotic state were reported for appropriate 

gains. There it was found that the induction current in the system generates 

negative feedback at positive values of gain and the excitability and the 

oscillating behaviours were found to be suppressed[219]. The suppression of 

oscillating behaviour with logarithmic memristor at positive feedback is a 

different feature observed in the present work. 

The problem is defined in section 6.2, the dynamical behaviour of 

Josephson Junction with different memristors are discussed in section 6.3. In 

section 6.4, an improved adaptive scheme is used to control the RCLSJ model 

to simulate the dynamical properties of H-R neurons. The possibility of 

generalized synchronization [222] between the two systems is examined in this 

section. With the controller with suitable gain coefficients, it is effective to 

reach synchronization. The dynamics is analyzed by the time series, phase 

portraits and by Lyapunov stability analysis. Time series behaviour shows 

spiking, bursting and tonic spiking. Also it is shown that the gain coefficient of 

the membrane potential of Josephson Junction neuron can be reduced such that 

the H-R neuron membrane potential lies within the same range of variation of 

the membrane potential of Josephson Junction. 

The H-R neuron model can emerge into different states such as 

quiescent, periodical and chaotic state in appropriate parameter regions                

[227, 228]. The electric activities of Hindmarsh–Rose neurons can be shown to 
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be similar to that of Josephson Junction neuron model[176]. Here resistive–

capacitive–inductive-shunted Josephson junction (RCLSJ) [216, 214] is 

exhibitng the same simulated behaviour as that of Hindmarsh–Rose neuronal 

discharges. Hence this model helps to understand the pattern formation and 

synchronization on network of neurons. 

6.2.  Definition of problem 

It is possible to enhance the nonlinearity of electric circuits by using 

memristor in circuits. Here the memductance is dependent on the input current. 

As a result the more complex dynamical behaviours can be resulted in [214]. 

Josephson Junction (JJ) coupled resonator also present complex dynamical 

behaviours in nonlinear circuit because JJ is used as sensitive inductive 

component. 

The Josephson Junction circuit coupled with memristor can be 

illustrated as below (Figure 6.1) 

 

Figure 6.1: Josephson Junction circuit with memristor(adapted from[214]) 

Josephson junction current with memristor using kirchoff’s law can be 

written as 
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Where V is the potential of Josephson junction.	�� represents the 

junction current. Nonlinear junction resistance is represented by	��	.	������� is 

the external bias current. �	and ℎ represents the phase difference in 

superconductor and the planks constant respectively. e is elementary charge and 

R and L denotes resistor and inductor respectively at circuit branch.  

According to the Faraday’s law of electromagnetic induction, the 

nonlinear memductance function and the induction current for memristor[8] are 

described as 

�=			
 !�"
� 		=			
 !�"	
� 	
�
� = 	#!$"� (6.2) 

Here #!$"represents the memductance term. The analysis of dynamics 

of neuronal system with Josephson junction is done in the following sections. 
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6.3  Dynamical behaviour of Josephson Junction with Different 

Memristor 

6.3.1.  Cubic flux controlled memristor 

The Josephson Junction circuit employing cubic flux controlled 

memristor is examined in this section. The dynamical properties of the model 

are explored also with respect to phase portraits and Lyapunov Exponents. 

When the effect of electromagnetic induction is considered, dynamical 

equations of four variable Josephson Junction model can be represented by 

[223]. 

	%&'  = 
&
() *� − ,!%&"%& − sin!%0" − %1 − 23%&!4 + 3$06"7 

	%0' =%& 

	%1' = &
(8(%& − %1) 

6' = 2&%& − 206 (6.3) 

Here 6, the fourth variable (depicted as	%: in plots) describes magnetic 

flux and memductance of flux controlled memristor which is represented 

by	!4 + 3$06". The parameters 23, 2& and 	20	are gains used to calculate the 

effect of electromagnetic induction on junction. The term 206 describes a 

feedback of magnetic flux that contributes the induction current.  

For a Josephson Junction circuit, the nonlinear memductance function 

and induction n current for memristor are described by the equation 

�=   

 !�"

�   =  


 !�"

�


�

� = #!$"� = 23!4 + 3$06"    (6.4) 
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6.3.1.1 Time series analysis and Lyapunov exponent plot of Josephson 

junction with Memristor 

The fourth order Runge-Kutta algorithm is used for numerical studies. 

When the parameters 2&;��	20 are fixed, the relation between sampled junction 

potentials and current of the inductance is detected to generate different phase 

portraits for the selected 23.	 It is observed that by selecting appropriate gains 

23, periodic and doubly periodic fast spiking is resulted in. The dynamics is 

studied for parameter values as	23 = 0.1, 	2& = 0.4, 	20 = 0.6 and 23 =
1.0, 	2& = 0.4, 	20 = 0.6	respectively. The parameter values for memristor are 

selected as A=0.2 and	B=0.4. The sampled time series for output voltage are 

plotted by applying different feedback gain. It is observed that the gain on 

magnetic flux control the abundant chaotic behaviours. 

(a) 
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(b) 

 

(c) 
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(d) 

 

Figure 6.2: (a,b) Fast spiking and corresponding phase portraits for Josephson 
Junction coupled with memristor for parameters values as k0=0.1, k1=0.4, 
k2=0.6 and (c,d) As gain parameter k0 changes to 1, the neuron spikes with only 
one voltage value at all time. 

 

The distribution for magnetic flux in the junction plays important role in 

changing the dynamical properties of electrical activities. Hence the chaotic 

dynamics in the system of Josephson Junction with memristor is also analysed 

with Lyapunov Exponent spectrum. Existence of positive value of Lyapunov 

Exponent for various values of the gain k0 of the Josephson Junction circuit 

shows chaotic nature of the system (Figure 6.3). 
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Figure 6.3: Lyapunov Exponent verus gain for JJ circuit coupled with 

memristor 

So the numerical simulations of time series and Lyapunov Exponent plot 

versus gain confirmed the chaos for all values of feedback gain in induction 

current. Multiple electrical activities can be found in sampled time series for 

junction potentials under appropriate feedback gain. The gain 23 regulates the 

coupling between junction potential and magnetic flux, which causes 

diversification of junction current. The other feedback parameters 2& and 20 
also help to detect the dynamical behaviours [219,222]. 

By increasing parameter k0, the transition to doubly periodic spiking is 

resulted in. It describes electrical activities in response to electromagnetic 

induction described by the memristor and magnetic flux. Hence gain on 

magnetic variable is found to be responsible for different dynamical 

characteristics [219,222]. 
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6.3.2  Logarithmic Memristor 

When the effect of electromagnetic induction is considered, the 

dynamical equations for the four-variable Josephson Junction model are 

described by 

	%&'  = 
&
() C� − ,!%&"%& − sin!%0" − %1 − 23%&! &

DE(FG"H 

	%0' =%& 

	%1' = &
(8(%& − %1)  

%:' = 2&%& − 20%:       (6.5) 

Here ,!%&" denotes the correlation between voltage and current of 

Josephson Junction. 

,!%" = I 0.366	%& < 2.9
0.0661	%	& ≥ 2.9 M  (6.6) 

The voltage, phase difference and induction current of Josephson 

Junction are represented by %&' , %0'  and	%1'  respectively. Here i is the external 

forcing DC current and B� are parameters of system. 

Here %:, the fourth variable describes magnetic flux and memductance 

of logarithmic flux controlled memristor which is represented by	! &
DE(FG". The 

parameters 23, 	2& and 	20 are gains used to calculate the effect of 

electromagnetic induction on the junction. The term	20%: describes a feedback 

on magnetic flux that contributes the induction current. The relation between 

charge and flux in logarithmic memristor[221] can be obtained by 

electromagnetic induction  
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	I= 

 !�"

�   =  


 !�"

�


�

� = #!$"� = 23 O &

DE(FGP     (6.7) 

The fourth order Runge Kutta algorithm is used for numerical studies 

with time step 0.01. Initial values for Josephson Junction coupled with 

logarithmic memristor are selected for	!%&,, %0, %1, %:) as (0.2,0.3,0.4,0.2). The 

MATLAB platform is used for various simulations. 

6.3.2.1 Time series analysis and Lyapunov Exponent plot of Josephson 

Junction coupled with logarithmic memristor 

Josephson Junction circuit model modified by a logarithmic memristor 

is proposed. When the parameters 2&, 20 are fixed, the relation between sampled 

junction potentials and current of the inductance is detected to generate different 

phase portraits by selecting appropriate gains for 23.	It is observed that for 

different gains 23, periodic spiking and suppression of oscillations can be 

resulted in. The dynamics is obtained by selecting parameter values as                   

23 = 0.2, 	2& = 0.6, 	20 = 0.5		and as 23 = 1.0, 2& = 0.5, 20 = 0.6. The 

parameter values for logarithmic memristor are selected as A=0.2 and	B=0.4. 

Here the negative feedback can be made strong enough to suppress oscillations. 

The sampled time series for output voltage are plotted by applying different 

feedback gain. Corresponding phase portraits are also shown in Figure 6.4a. 
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(a) 

 

(b) 
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(c) 

 

(d) 

 

 

Figure 6.4 (a,b) Periodic spiking and corresponding phase portrait obtained by 
selecting parameter values as	23 	= 0.2, 2& = 0.6, 20 = 0.5 (c,d) Suppression of 
oscillation is observed for		23 	= 1.0, 2& = 0.5, 20 = 0.2 respectively. The 
parameter values for logarithmic memristor are selected as A=0.2 and B=0.4 in 
both cases. 

 

The distribution for magnetic flux in the junction plays important role in 

changing the dynamical properties in electrical activities. It is interesting to find 
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the parameter region for chaos by calculating the largest Lyapunov Exponent 

spectrum [221]. The variation of Lyapunov Exponent versus gain (23" confirms 

chaotic nature of selected system. The other parameters are chosen as 2& = 0.6 

and	20 = 0.5 respectively. 

 

Figure 6.5: Lyapunov Exponent versus gain for Josephson Junction coupled 
with logarithmic memristor 

 

When the effect of electromagnetic induction is considered, dynamical 

equations of four variable Josephson Junction model with logarithmic 

memristor show distinct chaotic behaviour. Numerical studies confirmed that 

the dynamical properties of Junction potential depend on the coupling intensity 

(23) which bridged the voltage and the magnetic flux. 

From numerical studies it is observed that JJ model with logarithmic 

flux controlled memristor shows distinct behaviours compared with that of 

cubic flux controlled memristor [219-221]. In cubic flux controlled memristor 
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sampled time series of membrane potential shows fast periodic and double 

periodic spiking [215, 221, 227]. The distribution for magnetic flux in the 

junction changes the dynamical properties in electrical activities. This is 

confirmed by Lyapunov Exponent spectrum.  

6.4  Electric activities and neuronal synchronization of Hindmarsh–Rose 

neurons simulated by Josephson junction model 

The dimensionless model of resistive–capacitive–inductive-shunted 

Josephson Junction is described by [219, 222, 226] 

%&'  = &
() *� − ,!%&"%& − sin!%0" − %17 

%0' =%& 

%1' = &
(8(%& − %1" (6.8) 

The	,!%&" denotes the correlation between voltage and current of 

Josephson Junction. 

,!%" = I 0.366	%& < 2.9
0.0661	%	& ≥ 2.9 M (6.9) 

The voltage, phase difference and induction current of Josephson 

junction are represented by %&' ,%0' and	%1' respectively. Where i is the external 

forcing DC current and B� and B� are parameters of system. 

The original Hindmarsh–Rose (HR) neuron model is given by[68] 

%': = %R − ;%:1 + S%:0 − %T + ��F� 

%'R = U − �%:0 − %R 
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%'T = VW�!%: − %3"X − %T (6.10) 

a, b, c, d, r, and s are bifurcation parameters and I is external forcing 

current. The synchronization between the two corresponding variables is studied 

by imposing appropriate controller on equation (6.8). 

The equation (6.8) for Josephson Junction model can be controlled by a 

control function Y	which is governed by the dynamics of both the H-R neuron 

and Josephson Junction neuron (Equation 6.11)). The control function u is 

derived from the positive Lyapunov function which is constructed as [219]. 

%&'  = 
&
() *� − ,!%&"%& − sin!%0" − %17  

%0' =%& 

%1'  = 
&
(8(%& − %1"+Y    (6.11) 

The positive Lyapunov function is constructed as[219] 

� = A�0+!�' + AB�"0 (6.12) 


�

� = 2A��' + 2!�' + AB�)(�Z + AB�" 

     =−2AB� + 2AB� + 2A��' + 2!�' + AB�)(�Z + AB�" 

On rearranging  


�

� = −2AB� + 2!�' + AB�"*�Z + 2AB�'!A0B0 + A"�7 (6.13) 

So condition for negative error dynamic equation  

*�Z + 2AB�'!A0B0 + A"�7=0 
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��
�� = −2AB� < 0 

� = �3�E0D(�   (6.14) 

Y = −B�*U − �%:0 − %R − !3;%:0 − 2S%:"!%R − ;%:1 + S%:0 − %R + �"
− V*�!%: + 1.6" − %R" − ,

B� !� − ,!%&"%& − ���%0 − %1"

− %&U[�%0 − 1
B� !%& − %1"

− 2B�AB \%R − ;%1 + S%0 − %R + �
− 1
B� !� − ,!%&"%& − ���%0 − %1"] − B�!A + A0B0"!%: − %&" 

 (6.15) 

The gain coefficients A	and B can change the synchronization. By 

controlling the gain coefficients for the model it is possible to analyse different 

dynamical properties. 

6.4.1  Simulation of electric activity of neuronal synchronization 

The initial values for the model are chosen for (%&, %0, %1, %:"	as 

(0.2,0.3,0.3 and 0.1). Depending upon the gain coefficients different modes in 

activities are resulted in. Simulation results confirm that at certain values of α 

and β, the two systems reach phase synchronization. Time series analysis of 

output variables from H-R and RCLSJ model could not reach complete 

synchronization for some values of gain parameters within short transient 

period. It means that system does not settle down to stable values. However, the 

output time series of the two variables in the H-R and RCLSJ model are locked 

for appropriate values of gain coefficients. 
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With suitable values of gain coefficients, both systems show various 

chaotic activities such as spiking, bursting and synchronized states etc. It is 

observed that for A=0.1 and B =0.01 both systems are in spiking mode [Figure. 

6.6(a)]. The behaviour gets changed to bursting activity for 	A=0.05 and B =0.01 

[Figure 6.6(b)]. On reduction of the gain coefficient to A =0.01 with B =0.01 the 

tonic synchronization resulted in [Figure 6.6(c)]. The two systems break their 

complete synchronization for the values of the gain coefficients: both	A	and B  

having value 0.001. 

(a) 
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(b) 

 

 

(c) 
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(d) 

 

Figure 6.6: Time series behaviour shows spiking, bursting, tonic spiking and 
finally as A is reduced to value 0.001 the membrane potential of Josephson 
junction- neuron gets reduced to have values such that the H-R neuron 
membrane potential lies in the same range of variation.  

 

It is possible to make the time series pattern of two systems identical 

using controller with appropriate gain coefficients 

6.5  Conclusions  

The Josephson Junction circuit model (JJ Model) is improved to 

consider effect of electromagnetic induction by introducing the magnetic flux 

variable in to the model. Memristor is used to realize feedback coupling 

between magnetic flux and junction potential(x1). The sampled time series, 

phase portraits and Lyapunov plots for junction potentials of circuit in 

Josephson Junction with the flux of the memristor are investigated by nonlinear 

analysis. By setting appropriate parameter values, fast spiking of different 

periodicity is observed. Also with logarithmic memristor, periodic spiking and 
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suppression of oscillations are resulted in. It is found that dynamical behaviours 

and electrical modes are much dependent on magnetic flux. This behaviours are 

different from bifurcation studies of cubic flux controlled memristor, where 

periodical, multiperiodical and suppression of oscillation were reported in. 

Hence nonlinear properties can be enhanced by adding memristor term, as a 

result the present model can be used for potential applications in network. 

The chaotic circuit of Josephson Junction is used to simulate behaviour 

of Hindmarsh–Rose neuronal discharges. The electric activity of H-R neuron is 

modified by Josephson Junction chaotic circuit which is studied based on the 

Lyapunov stability theory and using adaptive track control scheme. The 

controller is approached analytically and two controllable gain coefficients are 

included. Simulation shows spiking, bursting, tonic type behaviours and finally 

as gain coefficient (A) is reduced to value 0.001 the membrane potential of 

Josephson Junction neuron gets reduced to have values such that the H-R 

neuron membrane potential lies within its range of variation. Hence the junction 

potential can be modulated in response to external forcing parameters. 

The memristor coupled with Josephson Junction circuit is effective to 

apply in the encryption and decryption of an image. It is observed that when an 

external ac signal is forced into the junction, the junction voltage has been 

found modulated in response to the external forcing signal. These behaviours 

confirm the possible applications of JJs in artificial neural networks [229,230]. 
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Chapter 7 

Conclusions 

 The thesis mainly focuses on chaotic behaviour of neural systems. The 

two different biological neuron models, such as Hindmarsh-Rose and Josephson 

Junction models are selected and the effect of various coupling schemes on 

them are analysed.  

In H-R neuron with memristor based coupling, various behaviours such 

as synchronization, anti- synchronization, oscillation death, amplitude death etc. 

are observed which suggests the various possible dynamics of brain cells. Also 

the observation of near death rare spikes is observed which is consistent with 

the experimental analysis of rat brain.  

The study of influence of electromagnetic inductions on neurons is also 

done. It gives a pathway to understand electromagnetic flux influence on the 

overall activity of neurons. The activity of neurons is examined with quadratic 

and exponential flux based memristor.  

Effect of Gaussian white noise on electromagnetic induction is also 

studied. It is shown that the memristor which produces magnetic flux can also 

influence neurons. This result is relevant in the context of neuromorphic 

quantum computation. Electromagnetic waves which can be produced due to 

artificial nano-synapses is capable of modification of neuron dynamics which is 

important in the context. Also energy is calculated in terms of Hamilton energy 

to understand the neuron response to external forcing current and action 

potential.  

The effect of field coupling on the electromagnetic induction and the 

corresponding modes of electrical activities with cubic flux controlled 
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memristor are also examined. The influence of the magnetic flux on membrane 

potential is studied. The field coupling contributes towards magnetic flux and 

induction current, as a result, the modes in electrical activities are controlled. 

The excitability of neuron mainly depends on the external forcing current and 

larger external stimuli are found to be much helpful to excite neurons. The 

present studies give instructive clues to understand the exchange of ions when 

synapse coupling is absent and gives further insight into signal encoding. 

Further, superconducting circuit with the Josephson Junction is chosen 

to replace H-R neurons for electromagnetic study of neurons. The model is 

improved to consider effect of electromagnetic induction by introducing the 

magnetic flux variable in to the model. Memristor is used to realize feedback 

coupling between magnetic flux and junction potential. It is observed that when 

an external ac signal is forced into the junction, the junction voltage has been 

found to be  modulated in response to the external forcing signal. 

Electrical activities of H-R neurons can be simulated with Josephson 

Junction model. Here membrane potential of Josephson Junction- neuron gets 

reduced to have values such that the H-R neuron membrane potential lies within 

the same range of variation. 

These behaviours confirm the possible applications of JJs as high-

frequency oscillator in artificial neural networks. 

In an overall perspective, the analysis of the 3-d and 4-d Hindmarsh 

Rose system, enabled examination of various phenomena like  synchronization, 

oscillation quenching mechanisms and near death  rare spikes. The chaotic on 

set is examined in terms of time series evolutions, Lyapunov Exponents, 

stability analysis, bifurcation plots and adaptive track control methods etc. 

Study of influence of electromagnetic induction and noise on neuron, 
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examination of improvement of superconducting circuits with memristor, 

investigation of the possibility of controlling the chaotic behaviour in the 

neuron systems are some other important key points presented in the thesis. 

Illustration of the role of different types of nanoscale memristors to enhance the 

nonlinearity of the neuron model is relevant in the context of the memory 

effects. 
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