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PREFACE

The thesis entitledStudy on the chaotic systems control and
synchronization’ comprises the study of nonlinear dynamics of near The
nonlinear dynamics of a neuron can generate datestisi chaos under some
conditions. The theoretical and experimental swidie chaotic neural dynamics
shall help to understand functions of brain suchadaptation, perception,
episodic memory, learning, awareness, intentionalitd thought. Also studies
on the effect of electromagnetism in brain givgmthway to the quantum mind
theories of brain dynamics. The work addresses tloaos in neural systems
accomplishes synchronization, anti-synchronizatmsgillation death, amplitude
death and near death rare spikes which may evéntliedd to different

biologically important goals.

The thesis is divided into 7 chapters. Though edwapter may stand on
its own, each contributes to the broader scopbethesis which is the study of

chaotic or nonlinear dynamics of selected systems.
Chapter 1

This chapter deals with introductory ideas of nogdir dynamics and
chaotic systems. Chaotic systems manifest itsedf mumber of phenomena in
both laboratory and in day to day dealings. Theattyical characterization tools
of chaotic systems such as phase portraits, aitsactime series analysis,
Lyapunov Exponent, stability of dynamical systemi§ircations and routes to
chaos are described. Some ideas related to coatrdl synchronization in

chaotic systems are also addressed.



Chapter 2

Chapter 2 deals with basic principles of Neurongh@mics. Theoretical
and computational neuroscience focuses on modesisgte neuron. Dynamical
and structural basis of brain activities, variou@dgical neural models and its
importance are discussed. Brief ideas of neurataxtity and different modes

of spiking are also addressed in this section.
Chapter 3

Chapter 3 of the thesis presents the investigaimothe possibilities of
couplings like linear indirect synaptic, nonlinearbic feedback and memristor
based couplings in the H-R neuron model. The naateswo-terminal device,
memristor acts like a resistor with memory andhisréfore of great interest to
be used as a synapse in hardware of artificialatewatworks. It is relevant to
study the possibilities of different memristor cbogs in neuromorphic
systems. The influence of different memristor congd such as cubic,
guadratic and exponential flux controlled memriston the neurons is
investigated. The linear stability analysis for thamamics of H-R neurons for
nonlinear feedback and for various types of fluxtcolled memristor couling is
done. The complex behaviour of neural systems eedigied with respect to
Lyapunov Exponents. The simulation results of thesepling schemes show
the presence of synchronization, amplitude deatti|lation death and behavior
like near death rare spikes for the neuronal systémmost of the schemes the
coupling strength summarizes information distribatibetween neurons. The
bifurcation diagrams show the qualitative changedwgfiamical behaviour of
neurons and maximum Lyapunov Exponent plots shavréimge over which

neuronal behaviour is chaotic.



Chapter 4

This chapter focuses on the effect of electromagnegtdiation in
nonlinear response of biological neuron systems. Adnlinear response of four
variable (improved) Hindmarsh-Rose neuron modsetlected and memristor is
incorporated to understand the fundamental mectmenisf the network of
neurons on cellular level. Memristor acts as thddar between magnetic flux
and membrane potential of the neuron. Inductionmaifltiple modes via
electrical activities of neurons is analysed withlgke and coupled neurons with

guadratic flux controlled memristor.

H-R model is also examined under the influence aui€3ian noise.
When Gaussian noise is added to the system, thikaben death is achieved
for relatively smaller magnitude of external cutremd it also leads to the
inhibition of quiescent activity under periodic cemt. Hamilton energy is
calculated to understand the response of actioengiat of the neuron to the
external forcing current. It would be helpful taudy the energy consumption
and supply in neurons. The changes of action patearttd mode of transition in
electrical activities among neurons are relatedlamilton energy estimated by
Helmholtz theorem. Bifurcation of Inter Spike Intak (ISI) versus current is
also plotted and it exhibits denser pattern as @atpwith that of cubic flux
based electromagnetic induction. Stability analgdithe system and electrical
activities of neuron with exponential flux contexdl memristor is also studied.
Hence the work gives a pathway to understand inflaeof electromagnetic
flux on the overall activity of neurons and it ista&blished that it introduces
high nonlinearity to the neuron model.



Chapter 5

Effect of field coupling and memristor on electranatic induction of
neurons are analysed in this chapter. It is possitd analyse the
synchronization and pattern selection in neuroreark under chemical or
electric synapse coupling. Field coupling is regdrdas a form of
communication within the nervous system causedxishange of ions between
cells or as a result of local electric fields. Bsolated and coupled neurons
multiple modes in electrical activities are anaty$er increase in the intensity
of field coupling. As the external forcing currentreases the system shows
various dynamics such as oscillation death, topi&irsg, desynchronization
and synchronization. Further it is observed thateurthe high coupling strength
the oscillation suppression of coupled systemsclieaed by high value of

external current.

It is observed that for network of 300 H-R neuromise neuron
oscillators show incoherent as well as synchromnatehaviour. Control
inputs for the system is analysed and stabilitysygtem is confirmed by the
negative value of Transverse Lyapunov Exponent filag observed that under
field coupling excitability of neurons can be chadgand hence this coupling

can produce signal exchange between neurons esgndpse is absent.
Chapter 6

The superconducting circuit, like the Josephsonctiums can also
model neurons. In Josephson Junctions it is p@&ssibsustain action potentials
upto picosecond range. Based on the law of elecgmetic induction, the
Josephson Junction circuit model can be improvedcdosider effect of
electromagnetic induction by introducing the magnétx variable in to the

model. In this chapter, the influence of memriginrthe dynamic behaviour of



Josephson Junctions is examined. This adds morearty to the selected
systems. It is found that dynamical behaviours eledtrical modes are much
dependent on magnetic flux. Here cubic flux comgland logarithmic flux
controlled memristors are selected to introducefltheto the model. Different
dynamics such as fast periodic spiking, doublegakeispiking and suppression
of oscillations are resulted in. Modulation of chiamscillation in the model

can be controlled by memristor.

Further, electric activity of H-R neuron is studied coupling with the
Josephson Junction chaotic circuit based on th@wyav stability theory. The
possibility of synchronization of the Josephsonclion neurons with that of
H-R neuron model is investigated. Depending on gaafficients different
chaotic phenomena such as spiking, bursting, tepiking and breaking of
complete synchronization are observed betweendsephson Junction and the
H-R neuron. Neuromorphic computing with in the feamork of ultra fast and
low energy superconducting digital circuit can behiaved using this
technology.

Chapter 7

Concluding remarks and discussions are includethapter 7.
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The ideas of dynamical chaos have altered the stadeting of the
origin of random behaviour in many fields. In tlgection some insights on
introductory ideas of nonlinear dynamics and cltadystems are given.
Chaotic systems manifest itself in a number of pheena in both laboratory
and day to day dealings. The tools for characteozaf chaotic systems such
as phase portraits, attractors, time series asaiysil Lyapunov Exponent are
explored in this chapter. The stability of dynarnhisgstems, bifurcations and
routes to chaos are also described in the follovsegtions. Some techniques

related to control and synchronization in chaoggtems are also addressed.
1.1  Brief history of chaos

Since antiquity, historians and researchers hatednbe idea that small
causes can sometimes have larger effects. Chaasythas claimed the
attention of scientists from t_’[.‘Q:entury onwards[1]. Many complex systems can
be better understood through the lens of Chaosryh&o1890 Henri Poincare
[2]found sensitive dependence on initial conditiams particular case of three
—body problem and later proposed that such phenansecommon in the field
of meteorology. He noted that very small fluctuasion initial conditions of the
system could result in very diverse outcomes. Theredictability of the
problem is due to the extreme sensitiveness talimonditions and it gives the
notion of “chaos”. Also Jacques Hadamard pointed thke divergence of
trajectories in spaces of negative curvature (13283). In the 1800s there had
been work on nonlinear oscillators in connectiorthwmodels of musical
instruments. In 1927 Balthazar van der pol BalthgZd noted occasional
"noisy" behaviour in a vacuum tube oscillator citonhich is governed by a

simple nonlinear differential equation.
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Other significant milestones in the theory of dymnzahsystems were
initiated after discoveries of Henri Poincare. Ime t1950's, Kolmogorov,
Arnold, and Moser focused their attention on thesigeence of motion of quasi-
periodic oscillators and proposed the fundamentAMKTheorem([5]. The
discovery and subsequent work contributed to erpla¢ inaccuracy of long-
term weather forecasting and were summarized bydtenz with famous
statement: “Does the flap of a butterfly’'s wingsBrazil set of a tornado in
Texas?” [6]. That is how the sensitivity to initiebnditions (‘SIC’ness) was
also known as the ‘butterfly effect’. After this joaturn, research on nonlinear
dynamics stepped up. In 1971, David Ruelle andig-[dakens proposed an
alternative mathematical explanation of the turboéein fluid dynamics based
on the existence of strange attractors [7]. A cewgdlyears later, Tien-Yien Li
and James A. Yorke used the term chaos to desdtibe erratic and
unpredictable behaviours arising in deterministonlmear maps [8]. At the
same period, Mitchell J. Feigenbaum unraveled usalgy of behaviour
occurring in a particular class of systems as thake transition to chaos, and

derived the Feigenbaum constant[9].
1.2  Fundamentals of chaotic systems
1.2.1 Sensitivity toinitial conditions

Chaos is aperiodic long-term behaviour of deterstinisystems. It
exhibits sensitive dependence on initial conditjp@k If the trajectories of the
system do not settle down to fixed points, periaizits or quasiperiodic orbits
as time progresses, then the system exhibits apetmng term behaviour [10].
‘Deterministic’ means that the systems behavioun ¢@ determined by
analytical or numerical computations. The irregldahaviour arises from the
system's inherent nonlinearity[11]. “Sensitive degence on initial conditions”

(‘SIC’ness) indicates that nearby trajectories ssjgaexponentially fast. As a

4
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result, any error in our knowledge of the initiainditions of the system will

amplify rapidly, making its behaviour effectivelypredictable.

An example of ‘SIC’'ness can be demonstrated udnegldgistic map
(Figure 1.1). Let us consider the logistic map.wesplot the orbits of the map
for different initial conditions, it is observedaththe two orbits are initially very
close. However, they quickly lose correlation amdrgually seem to be entirely

different from each other after some time.

1

—a X0*= O OOy b
e %0 = 0.995
0.8 ff---------- - i
oY= L S a
ol L
s Y3 N SRR S SO NI I S
o L i i
o s 10

Figure 1.1: Logistic map: Sensitivity to initial conditionadapted from [12])
1.2.2 Divergencein Phase Spae

The concept of the phase space was developed byiguBbltzmann,
Henri Poincaré and Willard Gibbs in the late 19thtary [13]. A phase space is
a space in which all possible states of the sysaesnrepresented, with each
possible state of the system corresponds to orgiermoint in the space. A plot
of multiple phase curves corresponding to differgmtial conditions in the
same phase plane is known as phase portrait. Fataneal systems, the phase
space usually consists of all possible values dfitpm and momentum

variables (Figure 1.2 and Figure 1.3). Thus, feimgle particle, there are three
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degrees of fredom (x,y and z); and the state tife particle is defined | three

positioncoordinates, and also by tthree coordinates of the mome.

simple harmonic oscillator pendielum

Figure 1.2: Phase portrait of SHM and for the pendulum rotatiare resulte
in as the energy is increased beyond a cular value (adapted from wolfra
math world [14])

Figure 1.3: 3D phase plot of Lorenz attractwhich exhibits the local and
global divergencef the trajector (adapted from[15,16])
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1.2.3 Positive Lyapunov exponent

The Lyapunov Exponent (LE) or Lyapunov characteriskponent of a
dynamical system is a quantity that characterizes rate of separation of

infinitesimally close trajectories(t)andx,(t) in phase space [17,18].
Sx(t) = e*xy(t) (1.1)
Ais the Lyapunov Exponent.

Lyapunov Exponent can be positive, negative or ziEpending upon
different orbits and this parameter decides whethertrajectory converges or

diverges.

If a trajectory x(t) given by the n dimensional linear ordinary

differential equation, with constant coefficients
x=Ax+ f(t) (1.2)

If the constant coefficient matiA has n Eigenvalu 44,1,

..............

then the real part of n different eigenvalues atmrally Lyapunov Exponents.

The maximal Lyapunov Exponent can be written as

ox(t)
6x0

Amax = 1My limgey o > I (1.3)

dxy = 0, ensures the validity of the linear approximat@nany time. It is
required that the two limits cannot be exchangettherwvise, in bounded

attractors, the result would be trivially O.
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For a dynamical system with evolution equatjdrn an n—dimensional

phase space, the spectrum of Lyapunov expofi;, A, An}generally

..............

depends on the starting pcigt

The Lyapunov Exponents describe the behaviour aftove in the

tangent space of the phase space and are deforadlie Jacobian matrix

aft(x)

dx |x0

J(xo) = (1.4)

Where the Jacobian matri¥ describes how a small change at patgt

propagates to the final poifit (x,). The limit

lim;_,.[J¢. (Transponse (]t)]% (1.5)
Defines a matri¥ (x,). If A;(x,) are the eigenvalues @i x,)

The Lyapunov Exponeld; are defined as

Ai(xo) = Lnh;(xo) (1.6)

For a dissipative system, as criterions, it is pegal that, if the attractor

reduces to
(a) Stable fixed point then all the exponentsagative;

(b) Limit cycle which indicates that an exponestzero and the remaining

ones are all negative;

(c) k-dimensional stable torus then the first kshEanishes and the remaining

ones are negative;
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(d) Strange attractor generated by a chaotic diggrthen it implies that at

least one exponent is positive.
1.2.4 Attractors

There are two types of attractors, namely, nomggaattractors and
strange attractors. To which attractor does thedtary ends up depends on the
initial conditions. The closure of the set of iaitconditions which approaches
given attractor is called its basin of attractitm.many nonlinear systems, the

boundary between basins is not smooth and hastalfsaructure [19,20].
1.2.4a Non-Strange Attractors
Non-strange attractors are further classified:into

» Fixed point: These are attractors whose orbits approach aitibegum
state. Here, the system converges to a single goimivn as the fixed
point. It is stable if the particle displaced stighaway from it returns to

the same point. Unstable fixed points are knowsaalslle points.

» Limit cycle: These are attractors whose orbits exhibit peciodotion.
In the case of dynamical systems with two dimerdiguhase space, a
limit cycle is a closed trajectory in the phasecgphaving the property
that at least one trajectory spirals into it asetiapproaches infinity or
negative infinity[19]. Such behaviour is exhibited some non linear
systems. As time approaches infinity, if all theghéoring trajectories
approach the limit cycle, then it is called anattive or stable limit
cycle. While on the other hand, if all the neighbgr trajectories
approach the limit cycle as time approach negatiiaity, then it is

called a non-attractive or unstable limit cycle.
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» Torus. These are attractors whose orbits exhibit quagbdic motion
which means it exhibits almost but not periodic it This means that
they are the sum of periodic functions with incomswgate frequencies.
It is a three dimensional doughnut shaped attractor

1.2.4b Strange Attractor

Often, the term strange is used for attractors shatv chaotic nature.
But it is not necessary that an attractor shoulaHhmeotic in order to be called
strange even though most of the strange attraetdnbit chaotic behaviour. An
attractor is strange if it has a fractal strucf@H. In other words, if an attractor
has a fractal attracting set, it is called a steaatjractor. They are characterized
with positive Lyapunov Exponent, which indicategperential divergence of
the trajectories. Another important feature is tiaty have three or more than
three degrees of freedom. If a strange attractacheotic i.e., if it exhibits
sensitivity to initial conditions, then any two #rhrily close initial points on
the attractor, after various number of iterations be very far apart from each
other. But after number of various iterations, ill wead to points that are
arbitrarily close together. Thus a chaotic attra@ssociated with a dynamic
system is said to be locally unstable but globaligble. The term strange
attractor was put forward by David Ruelle and Hadrakens[21,22] to describe
the attractors resulting from a series of bifu@atof a system that described
fluid flow. Examples of strange attractors inclutie double scroll attractors,
Hénon attractor, Rossler attractor, Tamari attrscend the Lorenz attractor
(Figure 1.3)[15-24].

10
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1.25 Bifurcation

The change in the qualitative character of a smiutas a control
parameter varied, is known as bifurcation[25]. Thiscurs where a linear

stability analysis yields instability.

In the case of a dynamical system, its behaviounflsenced by the
value of control parameters and this change in\iebais studied by making
use of the bifurcation plots of the system. Thetmdrparameters could be the
amount of strength of an interaction, the amplitadd frequency of a periodic
perturbation or some other quantity. The controtapeters may suddenly
change a stable equilibrium position into two symbsitions, or a system
initially at rest may set into oscillations. Thi©igmomenon of additionally
arising solutions or solutions that all of a suddbanges its character is called
bifurcation or branching. In brief, bifurcationseahe most observed transitions

in the dynamical system as the control parametearigd.

There are local and global bifurcations. If the dabur of a system in
the neighborhood of an equilibrium solution is ofedh, it is called a local
bifurcation. If the structure of the solutions i®dified on a larger scale, it is
called global bifurcation. Bifurcation from a stgeasblution with linear analysis
predicts existence of two possible classes of hebawas a single control
parameter is changed. If complex conjugate pagigénvalues passes through
the imaginary axis in the complex plane, then iH@pf bifurcation. It is also

possible to get bifurcation from periodic solution.
1.3 Routesto Chaos

Nonlinear systems can exhibit various dynamicstdpam chaotic ones

(If the dimension is large enough). This diversityd the transitions occurring

11
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between each of them can be probed by varying aneeweral system's
parameters is called bifurcation parameters. Tlakems it possible to observe a
cascade of bifurcations to stable attractors unskrange attractor is reached.
This is called a route to chaos. In the literatutee routes to chaos are
graphically represented by a bifurcation diagrarereHthe system's output is
plotted as a function of the bifurcation paramelidre most commonly used
scenarios are Intermittency route to chaos, Quasigie route to chaos, and

Period-doubling route to chaos.
I ntermittency routeto chaos

Here a single bifurcation is responsible for theeralation (or
intermittence) of zones of chaotic motion with zenef smooth regular
motion[26]. As the bifurcation parameter increast® turbulent zones last
longer and eventually, above a critical threshtid, system is always turbulent
(or chaotic). Intermittency can be seen in Rayldighnad convention and in

stirred chemical reactions.
Quasi-periodic route to chaos

It is also called the Ruelle-Takens-Newhouse réoitehaos. It consists
of the following succession of three bifurcationsen the bifurcation parameter
is steadily increased: First, a Hopf bifurcatioattleads to a stable limit-cycle
of period T, second a Torus bifurcation that letma quasi-periodic dynamics
with two incommensurate frequencies associated avitbrus attractor T2, and
finally a last bifurcation turns the torus T2 ireonew attractor T3 with three
incommensurate frequencies, which rapidly destadslinto a strange (chaotic)
attractor. This type of transitions can be obsenmnednvection and solid state

experiments.

12
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Period-doubling route to chaos

It is also called Feigenbaum route to chaos. Hesteady state is first
destabilized through a Hopf bifurcation resultimga limit cycle of period T.
Then, this limit cycle undergoes a cascade of pedli@ubling bifurcations until
the n—th limit cycle of period 2nT destabilized atite strange attractor
becomes stable. Period doubling cascades can leeveldsin fluid convention,

in nonlinear circuits and in lasers.
14  Stability Analysis

The stability theory helps to draw conclusions dlibe behaviour of a
system without actually computing its solution éx@pries. The first person to
study stability in the modern sense was Lagrang@g)J26], who analyzed
mechanical systems with Lagrangian mechanics. Qrf@soconclusions was
that, in the absence of external forces, an eqiuhib of a conservative
mechanical system is stable if it corresponds tmigmum of the potential
energy. The Russian mathematician A. M. Lyapuno®2)8introduced the
basic definitions of stability that are in use tpdahich was helpful to prove

many of the fundamental theorems.

Lyapunov stability[27] is concerned with the belmani of the
trajectories of a system when its initial statenear an equilibrium. From a
practical viewpoint, this issue is very importamchuse external disturbances
such as noise, wind, and component errors are alpagent in a real system to
knock it out of equilibrium. The Lyapunov theoryas indispensable tool in the
analysis and synthesis of nonlinear systems. Lyapuheory abounds in a
variety of notions of stability namely: stabilityasymptotic stability and

exponential stability.

13
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For a continuous system,

A vectorx, = 0 is an equilibrium point if

f(xe)=0 1.7)
Several types of stabilities can be described lksAe

e Lyapunov stability

An equilibrium pointc, is stable in the Lyapunov sense if for all

e > 0, there exist(t,, €) such that
vVt > ty, |l x(ty) —x, I< 6(t,, ) =1 x(t) —x, II< ¢ (1.8)

It guarantees that the trajectory of the systehi@se space will remain
in the vicinity of the equilibrium point if the itial state belongs to this vicinity.

If § does not depend ag, the stability is said to be uniform.
* Asymptotic stability
An equilibrium point is asymptotically stable if
I x(ty) —x. I<6(e) =1 x(t) —x. < ¢ (1.9)

Asymptotic stability includes the Lyapunov stalyilibut it imposes for
all trajectories initiated in the neighborhood dfetequilibrium point to

converge asymptotically to it.
A system is globally asymptotically stable if fdf teajectoriesx(t),
lim; e Il x(t) —x, I=0 (1.10)

here the system has a unique equilibrium point.
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A major inconvenience with the definition of statyilis that it requires

to find the the system’s trajectory.

* Thedirect method of Lyapunov stability analysis

It is also called the second method of Lyapunobibtg analysis which
allows to determine the stability of the systemhwiit explicitly integrating the

differential equation
x = f(x,t) where x(ty) = x, (1.12)

If there is some measure of energy in a systeis pibssible to study the

rate of change of energy of the system to ascestalmility.

* Theindirect method of Lyapunov stability analysis

This method uses the linearization of a systemei@rdhine the local
stability of the original system

Table 1.1 Summary of basic theorem of Lyapunov[27]

" Conditions :
Conditions on V(x,t) on ¥ (x.1) Conclusion
Locally positive definite
1 functions (Ipdf) > 0 locally | Stable
2 | Ipdf, decreasing > 0 locally | Uniform stable
3 | Ipdf, decreasing Ipdf Uniformly asymptotically stkab
. Globally uniformly
4 | pdf, decreasing pdf asymptotically stable
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4 — ; ; 0.4

-4l . . R -0.4 = i b
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(b) Asymptotically stable (¢) Unstable (saddle)

Figure 1.4: Phase portraits for stable and unstable equilbnpoints (adapted
from[27])

« Transverse Lyapunov exponents

When the chaotic systems are coupled they may ixhdbntical
oscillations with the onset of synchronization. fehare several methods for
investigating the synchronization problems. Onett@f method is based on
conditional Lyapunov Exponents which are calcula@dng the typical
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trajectory of the system[28]. This is also knowrgksbal Transversal Lyapunov
Exponent. When all global Transversal Lyapunov Egmis of system driven

by the signal are negative then the systems syndeo

In the presence of noise, in the neighborhood stabiie periodic orbits
there may exist regions where trajectories may lbeshed away from
synchronization subspace. Such situation occursnwiree of the Lyapunov
Exponents associated with the measure supportethdyperiodic orbit is

positive. Small noise could force the trajectorgtaer such a region.

Another method to check the possibility of the $yoaization is based
on Transversal Lyapunov Exponents which are condgpwdng periodic
orbits[29,30]. In order to ensure synchronizatiome oshould compute
Transversal Lyapunov Exponents for all periodicitsrbnd check whether they
are negative[29,30]. This is a difficult task. Eviem periodic orbit attracts the
trajectory to the synchronization space it is fdassthat it repels trajectories
locally. If all the eigen modes corresponding te #igenvalues are in the range
of negative Transverse Lyapunov Exponent, then twresponding

synchronous state is stable.

Lyapunov exponents;(x) of a trajectory based atare the logarithms

of the eigenvalues of the matrix[30]

AG) = limy oo ([TE (0] TE ()2 (1.12)
For discrete systems

TE(x) = DF(FE1(x)) v v DF(F(x))DF(x) (1.13)
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It is the composition of Jacobians. For continuous systéth(x) is the
matrix of partial derivatives of the time —L magluted by the continuous time

system.

Local Lyapunov Exponentd;(x,L) are the logarithms of the eigen

values of the matrix

ACx, L) = ([TH)]TTH () (1.14)

Local Lyapunov Exponents shows how rapidly perttidog of the

initial point x changes in L steps from the momeiperturbation[30].

Local Transversal Lyapunov Exponents are the locghpunov
Exponents corresponding to eigenvectors transvecsdhe synchronization
subspace[30]. It tells how trajectories of the dedpsystem are repelled or

attracted to the synchronization subspace in time L

Global Transversal Lyapunov Exponents, which aeguently used for
the investigation of synchronization gives stapilinformation which is

averaged over the whole attractor.
15 Control of chaos

Control of chaos is a process where a very smalugstion is applied
to a chaotic system. It helps to realize a desrahhotic, periodic, or stationary
behaviour[31]. Certain techniques employed for adlng chaos are feed-
forward ('non-feedback’), control based on peri@icitation of the system, the
'Ott-Grebogi-Yorke method' (based on the linealabf the Poincaré map),
the 'Pyragas method' (based on a time-delayed dekjltand the traditional
control-engineering methods including linear, noelr and adaptive
control[31].
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1.5.1 Control goals: stabilization

A typical goal for control of chaotic systems isalstization of an
unstable periodic solution (orbit). Lef® be the T-periodic solution of the free
system with initial conditionc(0) = x, i.e,x(t + T) = x,(t) for all t = 0. If
the solutionx,(t) is unstable, then the stabilization solution Villfill the

condition

lim ;Lo [x(t) = x.(t)] =0 (1.15)
Let there is a driving outpuyt(t) to the desired outpuyt (t)

lim ¢, [y (¢) — y.(£)] =0 (1.16)

For any solution &) there exist an initial solutiox(0) = x, such that

x(0) = x, € ¢. Whereg is the given set of initial conditions.
A control function can be foundin either open Idep(l forward) control
u(t) =U(t,x,) (1.17)
Or in the form of state feedback
u(t) = U(x(t)) (1.18)
Or in output feedback
u(®) = U(y(®)) (1.19)
inorder to ensure the equations (1.15) and (1.16).

This is the method of tracking problem for conttbeory. The key

feature of the control of chaotic systems is toie@ah goals by means of
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sufficiently small control. A special case of aboweentioned case is
stabilization of unstable equilibrium of the statg where stabilization should
satisfy the equatior¥ (x,y, 0) = 0. Here additional restrictions such as small
control solutions are used. This method even canuded for a simple
pendulum, where nonlocal solutions of the stahbilra problem with small
control are nontrivial. The control laws also cam éxtended by introducing
dynamic feedback described by differential or tideéayed models.

1.5.2 Methods of control of the chaotic processes
1.5.2a OGY Method

E. Ott, C. Grebogi and J. A. Yorke [33] were thestfito make the key
observation that the infinite number of unstableaiquic orbits typically
embedded in a chaotic attractor can be used fqouhgose of achieving control
by means of applying only very small perturbatioitsis possible to get
information about the chaotic system by analyzingliae of the chaotic
attractor. This slice is a Poinéasection. The information about the section has
been gathered, then the system is allowed to rdmwaait until it comes near a
desired periodic orbit. Later, the system is mameeimain on that orbit by
perturbing the appropriate parameter. When thercbparameter is changed,
the chaotic attractor is shifted and distorted. e attractor helps the system
to continue on the desired trajectory. This metdods not require a detailed
model of the chaotic system but only some infororatabout the Poincaré

section.
1.5.2b Pyragas method
In this method[33], an appropriate continuous adhiryg signal is

injected into the system, for stabilizing a per@dirbit. Its intensity is
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practically taken as zero when the system evoll@sedo the desired periodic

orbit. But intensity increases when it drifts aweym the desired orbit.
1.5.2c Adaptive Track control method

This method is a recursive design methodology famtoller
design[34]. It constructs associated Lyapunov fienst and feedback control
laws. The controller is selected such that it madspt to a controlled system.
The parameters may vary, or initially are uncertdia main purpose is to
design the adaptive laws and virtual control fumtdi to counteract the

unknown nonlinearity of the system.
1.6  Synchronization

Synchronization of chaos may occur when two, or enor
dissipative chaotic systems are coupled. Chao$itesys with positive
Lyapunov Exponents resist synchronization phenomeBgnchronization
occurs when the driving system loses its own dyoamand follows those of
external force [4,35]. Quantitatively this can besasured by the largest
Lyapunov Exponent. a negative exponent indicatesclsynization. The
stability of synchronization for coupled system# d@ determined by master

stability.
1.6.1 Synchronization by periodic forcing

In many systems chaos disappears if a periodicrreadtdorce with
sufficiently large amplitude is applied. Here syrmfization means that
periodic forced oscillations are observed instedcclmmos. For very strong
forces, dependence on the amplitude and frequehdiieoforcing does not
follow any general rule. In the driven system tkteaator is a limit cycle, so the
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relation between driven and driving variables canrépresented by a smooth

function.

For example for periodically driven Lorentz systeperiodic regimes
are observed only if the amplitude of forcing isgkr than critical value of

parameter.
1.6.2 Synchronization by noisy forcing

Synchronization by external noise means that tseesy forgets its own
dynamics and its own initial conditions and it émis the driving noise. For a
particular system where the synchronization transiis not seen, it can be
observed if a replica of system is considerechédftivo identical systems which
are having different initial conditions but arevem with the same noise, the
synchronization is set in[4,35]. For the positivgahunov Exponents, the
system trajectories will follow their initial cortébns and will remain different.
But for negative exponents they forget their ihitianditions and approach each

other, ie synchronization occurs.

Synchronization by common noise occurs without dingct interaction
between the oscillators and is independent of nurabescillators. The same
effect can be observed for any large ensemble aftical nonlinear systems
driven by same noise. All systems will synchronmevided the Lyapunov
Exponent is negative.

1.6.3 Synchronization by chaotic forcing

Complete synchronization, smooth and non- smootmetdized
synchronization, and Generalized synchronizatiowigsi periodic driving are
examples of chaotic forcing. Complete synchronmatvia chaotic forcing is

possible only when the system possesses a symreettlyat a regime where all
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variables of driven and driving systems are egsig@assible. When the state of
driven system is completely determined by the stditeriving system, it is
possible to use generalized synchronization[4fhdf driving force is described
by a torus in phase space, then driving systembedwave quasi periodically,
then trajectories lies on a torus in enlarged plsgpeee. This leads to strange

nonchaotic attractor. It has negative largest Ly@puExponent but is fractal.
1.6.3.1 Different types of chaos synchronization
1.6. 3.1a Generalized Synchronization

This type of synchronization is observed when thepted systems are
completely different. The driven (slave) and thidg (master) systems can be

represented by a one to one mapping given by,

y () =p(x(t)) (1.20)

Here, the trajectory of attracter in one systenegibyx(t) transforms
the trajectory of attracter in next systetft)by the transformatiop[36]. Thus,
y(t)can be determined if the evolution of the drivetsysis known. Once the
two systems get synchronized, the difference ifedtaries, with respect to

time, reduces to zero. i.e.,
lim; e, (x(t) — @(x()) = 0 (1.21)
1.6.3.1b Complete Synchronization

If the synchronization is displayed by coupled iit=ai systems, then
such synchronization is known as complete synchation. Here, there is an
equality of the state variables leading the syneization. It is also known as

identical or conventional synchronization[37]. Suelistems show strong
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coupling strength. This was the first recognizegketynd is the simplest one in
chaotic synchronization provided with negative ealu_yapunov Exponents
where the coupling is unidirectional. This is a @pk case of generalized

synchronization where functiam becomes unity.

However, this is not the case with non-identicastegns. Complete
synchronization is not observed in such systenste&u, phase synchronization

and lag synchronization are observed in such system
1.6.2.1c Phase Synchronization

In phase synchronization, all the phases are loekel® amplitudes are
least affected and chaotic. This was first obseimdbe Rissler system and can
be simulated by a very weak external force.mfn are integers ang,

represent the phases belonging to two differertesys, then
mxa—n*f=c (1.22)

wherec is a constant which represents phase synchroomzatiation between
the two systems. This shows that, if either thespeahange in the same way or
if a constant ratio exists between the two, phaselsonization occurs. That
means, perfect phase synchronization between twpled oscillators will
occur when the chaotic oscillators are phase coldt86,37]. Phase

synchronization finds application in neuroscieraser technology etc.
1.6.3.1d Lag Synchronization

Phase synchronization is the weakest of all amdathieved at very low
coupling strengths. At larger values of couplingsgths, non identical systems
may exhibit other types of synchronization also.&ample for this is the lag

synchronization. Lag synchronization lies interna¢eli to both phase
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synchronization and complete synchronization. Hdreth the phases and
amplitudes are entrained but there is a time lagvd®n the master and the
slave. The two chaotic systems become indistingiighin time, when shifted
by a proper time lag. With a slight increase in gteength of coupling,

complete synchronization can be achieved [4].
1.6.1.1.e Anti-Synchronization

Anti-synchronization occurs when the state varisbdé the both the
driving and driven systems are the same in magaihud opposite in sign. The
synchronization which was first observed by Huygengendulums was of this
kind [35]. They are characterized by the disappeaaf certain relevant state
variables that evolve in time. In this case, tHatien between the slavg(t),

and the mastex(t), is given by,

y() = —x(t) (1.23)
Under anti-synchronization,

limg_ e (x(t) — (—x(t)) =0 (1.24)
1.6.3.1f Hybrid Synchronization

In hybrid synchronization of two chaotic oscilladprone part of the
system is completely synchronized while the othet s anti- synchronized.
Here, complete and anti-synchronization coexist time process of

synchronization [35].
1.7  Some Applications of Chaos

Chaos theory has successfully explained variousmighena in the

natural sciences. There has been rapid and sucteggblication of chaos

25



Chapter 1

theory to mechanical systems, electrical circuésers, chemical reactions due
to the recent theoretical prediction that chaotitygical systems might be
controllable with small perturbations[38]. The apation of chaos theory to the
physical and chemical sciences has resolved mamlylgms, such as how to
calculate a turbulent event in fluid dynamics owho quantify the pathway of

a molecule during Brownian motion.

Many unresolved problems are present in biologyrardicine, such as
how to predict the occurrence of lethal arrhythnaasgpileptic seizures. In such
cases, we can quantize the chaotic system, sutheaservous system, by
calculating the correlation dimension of a samgfléehe data that the system
generates. In chaos theory, the correlation dinoenss a measure of the
dimensionality of the space occupied by a setmdoan points, often referred to
as a type of fractal dimension[38]. For biologisgktems, the point correlation
dimension does not presume stationarity of the.datait can track transient
non-stationarities which occur when the system gharstate. These types of
non-stationarities arise during normal function{egent related potential) or in
pathology (epilepsy or cardiac arrhythmogenesisiie TPoint correlation

dimension of a data can specify which patients mvdinifest sudden death [38].

Chaotic systems are deterministic. Hence thereeatgr sensitivity and
specificity of the dimensional measures. It carubed for quantifying the time
series. This accuracy in quantifying time seriepeaps to be significant in
detecting pathology in biological systems. Also thse of deterministic
measures lead to breakthroughs in the diagnosis¢reatnent of some medical
disorders. Chaos and its concepts are recentlyieabgb psychology by
researchers from the perspective of cognitive, ldgveental and clinical

psychology[38].
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Neurons and Neuronal Dynamics

Experimental and theoretical approaches of neurgnamics for
understanding the brain and its behaviour is agrésting research area. There
are as many as 1Oneurons in the human brain, and each can have thare
10, 000 synaptic connections with other neuron® dpplications of nonlinear
dynamics to the study of brain activity began tafish in the 1990s. Neuronal
dynamics is fundamental for all aspects of mental/iies such as perception,
cognition and emotion since the main features afirbmactivity is always
associated with the continuous change of the uyidegribrain states(even in a

constant environment).
21 Elements of a Neuron

Neurons are the elementary processing units inctem@ral nervous
system, which are connected to each other in aicatd pattern. The ability to
perceive surroundings — to see, hear, and smelt'svaeound — depends on
nervous system. The nervous system triggers int@iynresponses. For
example, increase in heart rate and blood flow tigates, cope with danger etc.

All of these processes depend on the interconneetiési

The brain is made up of many types of cells, inclgdneurons,
neuroglia and Schwann cells[39]. The latter twceymake up almost one half
of brains volume, but neurons are key elementdgnas processing. Neurons
generate electrical signals called action potestialhich is quickly transmit
information over long distances. Glia cells areassential to nervous system
functions, but they work mostly as supporting tleeinons. They are required

for energy supply and structural stabilization Hib tissue.
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The ideal spiking neurons (Figure 2.1) have thrséntt parts namely
dendrites, soma, and axon. Dendrites play theablaput devices and collect
signals from other neurons and transmit them toasdrhe ‘central processing
unit’ soma performs important non-linear processtep. If the total input to
soma exceeds a threshold value, corresponding tosigmal is generated. The
output signal is taken over by the axon which debvthe signal to other

neurons.

dendriles
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Figure 2.1 ldeal spiking neurons[adapted from elements of omalrsystems
[39]]

A typical neuron receives inputs from other neurand sends a signal
(presynaptic cell) across a synapse which is redeby another neuron (the
postsynaptic cell). The electrical transmembraneecis produced by inputs
change the membrane potential of the neuron. Thagshin synaptic currents
produce postsynaptic potentials (PSPs)[40]. Smaleats result in small PSP
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s. The larger currents can produce postsynaptienpats which can be

amplified by voltage gated channels and causenitiation of action potentials.

Q > \K\WB%/ Soma (cell body)

Dendrite

Neuro- o \

s
O ; C 3 h

transmitter Y, % A
{
Axon terminal /

Postsynaptic cell

Figure 2.2 Basic structure of neuron (adapted from Neurons ndtass
Psychology-Lumen Learning [courses lumenlearninglgo

A single neuron in vertebrate cortex often connetbds more
than 10 postsynaptic neurons. Many of its axonal branddes in the direct
neighborhood of the neuron, here the axon can stseich over several
centimeters. So abrupt and transient changes ofomama voltage propagate to

reach neurons in other areas of the brain.
2.2 Neuron as dynamical system

The coordination between brain and different organsiade possible

with the help of neurons through electrical impalseEhis means, every time an
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input stimulus is given to a living body, braintiates a propagating change in

the membrane potential that essentially bringgteiresponse to the stimuli.
2.2.1. lonic mechanisms

Action potentials play an important role among thany mechanisms
for communication between neurons. They are alxhahges in the electrical
potential across a cell's membrane and can propagaessentially constant

shape away from the cell body along axons.

Action potentials can be sustained by ionic cugetirough the cell
membrane. The ions most involved are Sodium (N&&jcium (Ca++) and
Potassium(K+). In the simplest case, an increasthenmembrane potential
activates (opens) Na+ and/or Ca++ channels, raguiti rapid inflow of the
ions which further increases in the membrane peight,42]. Here positive
feedback leads to sudden and abrupt growth of ttengal. This triggers a
relatively slower process of inactivation (closingj the channels and/or
activation of K+ channels. It leads to increased ¢Ufrent and it eventually
reduces the membrane potential. These simplifieditipe and negative
feedback mechanisms are responsible for the gémeradbf action
potentials[43]. There are more than a dozen ofouariionic currents having
diverse activation and inactivation dynamics anduogng on disparate time.
Any combination of them would result in interestingnlinear behaviour such

as neural excitability.
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Figure 2.3 Impulse transmission among nervous system[adapbet43]]

The inside of a neuron cell is approximately 70ipglts more than that
of outside(-70 mv). This can vary by neuron typd by species. The following
Figure 2.4 shows the resting membrane potentialpoldezation and

hyperpolarization mechanisms in neurons.
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(a) Resting potential
0

Membrane potential: The (a) resting membrane potential is

a result of different concentrations of Na+ and K+ ions inside

and outside the cell. A nerve impulse causes Na+ to enter
the cell, resulting in (b) depolarization. At the peak action

potential, K+ channels open and the cell becomes (c)

hyperpolarized.

depolarization and

hyperpolarization among nervous system (Adaptet[#3])

Figure 2.4 Mechanisms of Resting potential,
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2.2.2 Dynamical mechanisms

A neuron is quiescent if its membrane potentiahtigest or exhibits
small amplitude(sub threshold) oscillations. In ayrcal point of view this
corresponds to the system residing at equilibriurtoa small amplitude limit
cycle attractor. All the inward current causing olepization will be balanced
by the hyperpolarizing outward currents. If the no@s remain quiescent in
spite of all the small perturbations, we can codelthat the equilibrium point is
stable. A neuron is said to be excitable if a smpaliturbation away from a
guiescent state can result in a large excursiats gotential before returning to
guiescence. Here large excursions exist becausguiescent state is near a

bifurcation.
2.2.2.1 Periodic spiking

Neurocomputational properties of cell depend omrbdtions of large
amplitude limit cycles which corresponds to peroosipiking. This differs from
bifurcations of quiescent states. When limit cyisl@bout to disappear or if it
loses stability through subcritical flip bifurcati®, there is a coexistence with
stable quiescent state[44]. So weak perturbatismmnbaappropriate timing can

shut down periodic spiking prematurely
* Tonic and phasic spiking

Tonically spiking cells fire continuous trains aftian potentials for the
duration of the depolarizing pulse of injected eatfFigure 2.5(A)]. While
phasically spiking cells respond to a sustained@ejzing current pulse with a

very brief train of action potentials followed bg further firing[Figure 2.5(B)].
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(A) tonic spiking (B) phasic spiking (C) tonic bursting (D) phasic bursting
M L
_Jinputdc-current _ A == A = A =

20ms

Figure 2.5 Various spiking and bursting patterns in respotts@ sustained
depolarizing pulse(adapted from[45]).

2.2.2.2 Bursting

When neuron activity alternates between a quiesstate and repetitive
spiking, it is termed as bursting. It is usuallyusad by a slow voltage or
calcium dependent processes that can modulatesfaising activity[44,45].
There are mainly two important bifurcations asseclawith bursting such as
bifurcation of quiescent state that leads to répetspiking and bifurcation of a
spiking attractor that leads to quiescence.

Sometimes neurons use rapid clusters of two or ractien potentials,
called bursts, as basic signaling events insteasinople spikes. Examples of
tonic bursting and phasic bursting are shown inufeég2.5(C) and Figure
2.5(D).

Some of the other commonly occurring firing patseane shown in Figure 2.6
* Regular spiking (RS)

It is a tonic spiking with possible adapting fregag that present a
stationary firing rate in response to a sustainedotirizing pulse[45]. This
firing pattern is the most spread among excitat@yrons.
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* Intrinsically bursting (IB)

Here neurons respond with bursts of action potkatithe beginning of

a strong depolarizing injection, followed by tosjiking.
» Chattering (CH)

This corresponds to high frequency bursts with ktikely short
interburst period. This behavior has mainly beeseoled in layer Il Purkinje
cell.

* Fast spiking (FS)

It is a high frequency tonic spiking with little @ptation, observed in
inhibitory cells. Fast spiking cells exhibits irtdgr spiking when injected with

weak current.

regular spiking (RS) intrinsically bursting (18) chattering (CH) fast spiking (FS)
T | - ac)

Figure 2.6 Firing patterns of regular spiking, Intrinsicalbyrsting, Chattering
and Fast spiking(adapted from[38])

2.2.2.3 Neuronal Excitability

Neuronal excitabilities behave as the basic dynsmedated to the
transitions between firing and resting states. €tgpes of neuronal electronic
activities play important roles for achieving bigical functions of nervous

systems such as information encoding, transmisarah processing. In 1948,
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Hodgkin[46] distinguished different firing frequencesponses of resting state

to external constant depolarization current sinouest

-

Neural Excitability

i

Periodic Spiking

Periodic Bursting

Figure 2.7 Neural excitability, periodic spiking and burstijgdapted from
[38]).

There are different excitabilities according to frequency of emerging
firing. If the action potentials are generated wétbitrarily low frequency
(5Hz-150 Hz), it is termed as Class 1 neural ekditg. Here frequency
increases with increase of current[47]. For Clase@ral excitability the action
potentials generated in a certain frequency baatishrelatively insensitive to
changes in the strength of applied current. Henedfifrequency switches from
0 to a nearly fixed value (75 Hz-150 Hz).
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Morris-Lecar Hodgkin-Huxley

Spiking
Frequency
\
Spiking
Frequency
P~

Class 1 Neural Excitability Class 2 Neural Excitability

Figure 2.8 Transition from rest to repetitive spiking in Maliecar and
Hodgkin-Huxley models when the strength of apptiadrent increases[47].

Class 1 and Class 2 neurons can also exhibit diffephase and
frequency responses, different coefficient of \i#iss, or different histograms
of interspike intervals to noise etc. Neuronal ®atulities can affect
spatiotemporal behaviour of the nervous system.amigt neurons in
hippocampus exhibits Class 1 excitability. Intemo@s in the neocortical and

entorhinal cortex manifest the excitability of Glaa

Class 1 excitability corresponds to a resting statable equilibrium)
changed to firing (limitcycle) through saddle nodefurcation as the
depolarization current increases. The classes ingp corresponding to
bifurcations of the limit cycle combined with thiasses of excitability help for

understanding the dynamics of transitions betwesting and firing states[48].
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A fundamental property of the neurons is excitapililustrated in
Figure 2.6. Small perturbation results in smallategres from the equilibrium.
It is denoted as postsynaptic potential. Largetypleations are amplified by the
neuron’s intrinsic dynamics and cause initiationtloé spike response. If a
sufficiently strong current injected into the newrat will bring to a pace

making mode and hence exhibits periodic spiking/eyg{38].

g (&) resting (b} excitable (e) perodic spiking
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membrang potential, Vv

Figure 2.9 Resting, excitable, and periodic spiking activityrresponds to a
stable equilibrium (a and b) or limit cycle (c)spectively (adapted from [39])

The neuron can sustain quiescent state despitd dmsfalrbances and
membrane noise. Then the corresponding equilibisitermed as stable. The
study of the phase portrait gives the overall qatlie description of dynamics.
It depicts certain special trajectories (equilibmg) separatrices, limit cycles)
which determine the topological behaviour of ak thther trajectories in the
phase space. In order to understand the dynamibanestn such amplification,
it is needed to consider the geometry of the phmm&rait near the resting

equilibrium. This is the region where the decisiotire or not to fire is made.
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If the state of a neuron is given by a stable lioyitle in phase space.
The corresponding phase space trajectory repreaesigble periodic orbit. The
electrophysiological details of the neuron helpslétermine only the location,
the shape, and the period of the limit cycle. Tleeiran can have periodic

spiking activity as long as the limit cycle exists.
2.2.2.4 Bifurcations in neuron dynamics

Suppose, the control parameter is the current wisidieing injected to
the neuron and its strength can be varied. Injtidde neuron is at quiescence
and as the strength of current is varied, the meaxhibits tonic spiking (phase
portrait corresponds to a limit cycle). So, thereame intermediate value of the
injected current where this transition takes plddes transition corresponds to
the bifurcation of the neuron dynamics (a qualatchange in the phase
portrait). Neurons are excitable because they ase bifurcations from resting
to spiking activity. So the type of the bifurcatiaetermines the excitable
properties of the neuron. The bifurcations of aunildgrium state leading to the
transition from resting to periodic spiking behawian neurons. There are
various types of Bifurcations, namely, Saddle-ndaifircation, Subcritical

Andronov-Hopf bifurcation, Supercritical Andronowpif bifurcation [49].
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Figure 2.1Q Saddle node bifurcation. (a) Stable and unstablietisns as a
function of external current (b) Oscillations begiith arbitrarily low frequency
(adapted from [41])
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Figure 2.11 Hopf bifurcation. (a) Stable fixed point losesalstity at
supercritical hopf bifurcation point (b) Oscillati® begin with frequency that is
bounded from below but not equal to zero (adapteah {49]).
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Figure 2.12 Subcritical Hopf bifurcation. (a) A single Stabliged point loses
stability at subcritical Hopf bifurcation point atanches of unstable periodic
solutions are resulted. There is a region of bibtalbetween Enpo<l exi<IHope
(adapted from [49])

2.3 Neurons in brain

The neurons in the human nervous system can beedivnto different
classes; sensory neurons, motor neurons, intemgw@ed neurons in brain etc.
Sensory neurons get information about what is goimgnside and outside of
the body and bring that information into centraivogis system. Motor neurons
get information from other neurons and convey comusao muscles, organs
etc[50]. Interneurons connect one neuron to anodmel are found only in
central nervous systems. In the brain, the distincbetween the types of
neurons is much more complex. Some of the braimomsuare involved in
sensory processing like those in visual or auditooytex and others are
involved in motor processing — like those in theebellum or motor cortex.
There are tens or hundreds of different neuronglénthe sensory or motor
regions. Researchers are trying to find out a wagldssify the huge variety of

neurons in the brain.
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Mostly it is very difficult to define a neuron typBleuron classification
can be done depending on the type of neurotrarertiiit a neuron uses. Some
GABA neurons[42], for example, send their axon ryost the cell bodies of
other neurons; others prefer to target the dersdriiach neurons show distinct
behaviours in response to its electrical propert@®gmpes, genes expressed,
projection patterns and receive different inputssidgle neuron model perform

same function or suite of functions in the brain.

Researches[50] showed that neurons are discrets eeting as
metabolically distinct units communicating via sipdized circuits and
junctions. The main electrophysiological featuréshe neurons were obtained
by the pioneering works of Hodgkin and Huxley[46&ubstantial early
knowledge of neuron electrical activity came frorperiments on the squid's
giant axons [46]. As they are much larger than humeurons, but similar in
nature, it was easier to study them with the tetdgywof the first half of the
twentieth century. This poor squid suffered pressustretch, injections of
chemical substances and electrocutions, to ret®akon's electrical activity by
inserting electrodes into it. The accurate measanésnobtained opened the

way to the current neural science theory.
2.3.1 Dynamical and structural basis of brain actiity

Brain research is one of the most important objestiof neuroscience
which helps to understand the neuronal and cortizathanisms underlying
perceptual and cognitive functions. First influahtbrain theories such as
localizationism [51] postulates that the brain usidtionally segregated ie, the
parts of the brain perform specific functions. Tkieory was motivated by
Franz Joseph Gall's theory of phrenology [51]. dtdbserved that specific
regions in animals and humans is associated witticpkar brain functions and

it led to the establishment of concept of functiosegregation by the end of
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nineteenth century. Functional brain imaging (eanctional magnetic
resonance imaging fMRI) confirmed that specific dilons activate particular
regions of brain. While many fMRI, human electrogpitalography (EEG) and
magneto encephalography (MEG) as well as animalreebrding studies put
forward the idea that neuronal computations ardribiged and engage a
network of distributed brain areas[51]. This coricégads to the idea of
functional integration. Perceptions, memories, awkn emotions can be
represented in a distributed manner. Functionaheotivity is the statistical
dependence on remote neurophysiologic events anbdecassessed with simple
coherence analysis of fMRI or electrophysiologitiale series[51]. Effective
connectivity is defined as the influence of ongeysover another. Hence it can
be concluded that global network dynamics overrithsted brain areas can
emerge from the local dynamics of each brain at@anversely, global
dynamics also can constrain local activity such tha whole system becomes
self-organized. The implicit coupling between loaald global scales induces a
form of circular causality that characterize codpleomplex self-organized
system, like brain (e.g: Dynamics of neuronal papahs within cortical areas

are enslaved by large scale intercortical dynam8j3|
2.3.1.1 Attractors and brain dynamics

Computational neuroscience tries to describe themyrs of networks
of neurons and synapses with realistic models. & hasdels help to reproduce
emergent properties in neurophysiology (Single amdtiple cell recording,
local field potentials, optical imaging, EEG, ME@IRI) and associated
behaviour. The theoretical frame work, the attratteory [49] helps to capture
the neural computations inherent in cognitive fiord. This theoretical frame
work based on mathematical models is formulatedhatlevel of neuronal

spiking and synaptic activity.
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Generally there are two main modeling approachetpim-up and top-
down models. Bottom-up dynamical models start framdescription of
individual neurons and their synaptic connectioblsing anatomical and
physiological data, the particular pattern of cartively in a circuit is
reconstructed, taking into account the strength pothrity (excitatory or
inhibitory) of the synaptic action. Synapses rdalgas neurotransmitter brings
the membrane potential of the postsynaptic newwaard the threshold and the
corresponding action potentials generated are tealitk excitatory. Inhibitory
synapses drive the membrane potential of postsgnaygiuron away from
threshold and generate action potentials. Top-ddymamical models start with
the analysis of those aspects of an animal's behavihat are robust,
reproducible and important for survival. Buildingchk large-scale models is to
determine the type of stimuli that elicit specifiehaviours; this knowledge is
then used to construct hypotheses about the dyahpiiiciples that might be

responsible for their organization.

For example local neuronal network model of integrand fire [50]
enables the study of spiking activity of single meu and the effect of
pharmacological agents on synaptic currents wscbbiserved through fMRI
and neurophysiological findings. Spike arriving aatgiven synapse provides
input to the neuron which induces postsynaptic takmiy and inhibitory

potentials.

Structural connectivity of the Macaque and the hurmartex can be
cited as an example for global network [51]. Het&imesic connections between
different cortical areas are specified by neurcama& matrix. These
connections between a two distinct brain areasbeadescribed by the density
of synaptic connections between neurons in thad. aféeight of inter areal

connections is described by the coupling strengéci§ed in the matrix. In
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Macaque case, neuro anatomic matrix is obtained ftoCoMac database [49].
The connectivity of 40 cortical areas in one hemmép of Macaque brain is
obtained from the data base. In human case neuwtwraic information is

obtained from diffusion weighted tensor imaging (Pand diffusion spectrum
imaging (DSI) taractography [48].

2.4  Biological Neuron Models

Building dynamical models to study the neural basibehaviour is one
of the important issues in computational neurosmerSpecialized neurons
transform environmental stimuli into neural codénisTencoded information
travels along specific pathways to the brain ortre@mervous system and

combined with other information.

A Dbiological neuronmodel represents the electrigabperties of
neuronal action potentials. The action potentialsse changes in electrical
potential across cell membrane. It lasts for abomug millisecond. Spiking
neurons are the major signaling unit of the nerveystem. It is observed that
all cells of the nervous system do not producestirae types of spike. Cochlear
hair cells, retinal receptor cells and retinal tgpaells are some examples of
cells which do not spike. Many artificial neuron dets were proposed to model
neurons in the nervous system to express the awsfthrough the surface of
membrane, to examine exactly how brain works andiksite the activities of

the brain.

In 1943, the first neuron model[52] was proposedMxCullach and
Pitts. Later the most successful and widely usadaremodel, the Hodgkin-
Huxley model is developed (1952) [46]. The ionicamanism and electrical
current on membrane surface were discussed inntloidel. After that, the

FitzHugh—Nagumo neuron model, the simplified typehe Hodgkin— Huxley
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neuron model, was proposed. In 1972, Nagumo arml [S&} defined a neuron
model and the weakly coupled Wilson—Cowan neurodehwas defined in the
same year. The Moris—Lecar neuron model was prabosel981 is a
conductance based neuron model [49]. Later Hindm&tese(1984) [50] and
Izhikevich (2003) [51] neuron models were also syal. The studies based on
the behaviour of the collective neurons rather ttiet of an individual neuron
were proposed later. Since the biological informmatrocess and production of
regular rhythmic activity are always related witte tcooperative behaviour of

neurons [48].

It is difficult to identify the interactions of theollective neurons in the
living body except for some applications. Sevel@raative system approaches
such as numerical modeling [52] and hardware implaations, which help to
observe the fire patterns or synchronizations afrowes, have become crucial
[53]. Hardware realizations are able to emulatel&leaviour of an individual
biological neuron or coupled neurons with real tiagaptability. Furthermore,
hardware realizations of neuron models can be usgatactical applications
such as bio-inspired robotic systems and CPGs (@leRattern Generators)
[53]. The software examinations of the biologicaliron models can simulate
the behaviour of the neurons[54]. Nowadays, HindgtmaRose neuron model
(H-R), which exhibits several fire patterns of theuron are widely used in

synchronization studies, due to their programmahbreconfigurable features.
2.4.1 Some commonly used neuron models
2.4.1.1 Hodgkin - Huxley Model

In 1952, Alan Hodgkin and Andrew Huxley was thestfito study the
bifurcation behaviour of the neuron. They develomednodel system[46]

guantifying the features of the giant squid axon, Cambridge which
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revolutionized the field of cellular biophysics. i$heminent discovery was

honoured with nobel prize in 1963.

This model gives an empirical kinetic descriptidnianic mechanisms
in a neuron. It is based on Sodium, Potassium aaftage ion flow. An
electrode is assumed to be inserted within thet@®&an such that it has same
potential that of intracellular component of theisre (axoplasm)[55]. Another
electrode is placed in the extracellular fluid zatro volts). This set up thus
measures the membrane potential as the differeng®tential is determined
with the help of an amplifier. This is then conmettto a voltage clamp
comparator along with a desired voltage (or commantthge), say ¥, which is
set by the experimenter. As long as there is aewdiffce signal given by
(Vm -Vo), generated by the amplifier, there is a currémtvihg into the axon
through a current passing electrode and this wiltd make both the potentials
same. This injected current can be measured wheslendially states that,
corresponding to any change in the voltage actossnembrane, ion channels
open and close resulting in the flow of currente Gurrent generated by those

voltage gated ion channels are recordable.
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Figure 2.13 Time series of the membrane potential in the ore(@dapted
from[45]).

The variation in the membrane potential leads ¢thange in the current
through the ion channels. In the Figure 2.13, dstimg potential is at -65 mV.
When it is switched to 20 mV, there is a chang¢hm charge separation and
hence capacitive current flows. The capacitiveantrivhich is actually caused
by the change in environment will have a sign ofipos$o the voltage
perturbation applied and Once the new potentiak&éched, there is no more
capacitive current [56]. Current flows so as tolptise membrane potential
back to the resting potential. Different ion chasrepen and close and a rapid
inward and a delayed outward current are observHus is because
depolarization causes the transport of sodium idrigs inward current is
known as sodium current. It is inactivated as tgoes. The delayed outward
current is caused by the Potassium ions and thayt dbow any decrease or
inactivation in axons. The current flow is gredtardepolarization than that for

hyper polarization [56].
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Figure 2.14 Equivalent circuit representation for the Hodgkinxley model
(adapted from [45]).

The nonlinear differential equations representingdgkin-Huxley

model (H-H model) is as follows

—CC;—Z =m3hgno(V —E(Na)) + n*gx(V —E(K)) + g,(V—E(L)) = I
Z—Z= an(1—n) = fpn
i—’?: @, (1 —m) — Bm
2 = @,(1—h) — Brh (2.1)

dt
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C represents the membrane capacity, V the totalbreme potentiabn
the sodium activation variable and h the Potassiactivation variable.
Jng Is the maximum sodium conductance afgds the maximum Potassium
conductance. E(K) represents the Potassium equilibrium potentig),
maximum leakage conductance aB¢L) represents the leakage equilibrium
potential. | gives the external current; represents gate inactivation rate

(i = m,n, h), andp; gives the gate activation rate£ m, n, h).
2.4.1.2 Fitzhugh — Nagumo Model

The Hodgkin—Huxley (H-H) model[46] of the nerve iolpe made up of
four coupled nonlinear differential equations. Besm of the complexity of the
equations, it is difficult to use them in simulatso of interactions in small
neural networks. Hodgkin-Huxley model can mimic #ie behaviours of
neuron spiking. But due to its high dimensionalityis difficult to achieve
analytical solutions. Only numerical solution cam tound for each specific
conditions. Thus second-order differential equatainthe model which can

predict the main properties such as the frequencyewt relationship.

Fitzhugh[52] introduced a second-order model of rikeve impulse. It
helps for the prediction of an action potential atiom. The dynamics of the
slow sodium and potassium ions in H-H model ilee, gating variables: and
hare replaced by an effective curremi(t) in Fitzhugh — Nagumo(FHN)
model[57]. The fast dynamics of sodium ion acrbesrteurons in H-H model is
replaced by (t) [59].

The FHN model is expressed as,

dv 1 3
E:U—gv _W+Iext
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dw

- = p(v+a-—>bw) (2.2)

where, vis the rate of change of the neuron membrane paleinom its
equilibrium due to the fast ion dynamics with tinmeis the recovery variable
for the neuron membrane potential which deals wlithv diffusive ion currents
in the neuron. These two variables represent the gif the system at any
instant. The equation for the recovery variablenghohat, it depends on the
departure of the membrane potential from its elguiim valuev , and it decays
at a constant raté”. |y is the external stimulus or the external curreneig to
the neurona, b andg are constants, where typically< a <1,¢ > 0,b > 0.

Parameters can be chosemas 0.7,b = 0.8, ¢ = 0.08.

Withe >0 , the origin in the system is an unstable fixednpo
surrounded by a globally stable limit cycle. Ittiee only parameter that can
change the behaviour of the neuron around the rtbleésAlso, decreasing
decreases spike rise and fall times. Finally, tehaliour around and below
threshold is influenced hy. For certain parameter values, the solution
demonstrates a slow collection and fast releasthefpotential. This kind of
behaviour is often labeled as ‘integrate and firdowever, in biological
systems, a resting phase is required for the neuafter firing. Tonic spiking

with FHN can be generated withs appropriate paranmetues.
2.4.1.3 Hindmarsh-Rose Model

FitzHugh-Nagumo model is the simplification of thR®dgkin-Huxley
model for neurons. It came with many drawbacks. FH& model reduced the
complexity of the neuron models. Self-sustainedotibadynamics was not
observed with FHN model. The most essential charstics of neurons such
as bursting could not be observed. FHN model ctsid only a few

parameters. It is difficult to adapt this modeh&urons with specific properties.
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The problem with FHN model is that those equatidosnot provide a very
realistic description of the rapid firing of theuren [57]. They do not give a
reasonable frequency—current relationship. The Fibdel, which is the
simplified version of H-H model, with only two dimsions was introduced so
that its global behaviour can be easily studied phase plane. However, this
model could explain only the generation and propagaof action potentials
with only the Sodium and Potassium channels. Eatod of the rhythm of
spike train seems to be difficult with FHN modeloM channels with slower
kinetics have to be introduced to understand mdyeuta the underlying
mechanisms. Hence, the FHN model was modifiedue tfie Hindmarsh-Rose
model which is a three dimensional model for neuvath rapid firing. In
particular, it shows bursting behaviour and chaos.

The Hindmarsh-Rose (H-R) model for neurons was ldpeel by J. L.
Hindmarsh and R. M. Rose to allow for rapid firiagbursting in neurons. The
Hindmarsh-Rose neuron model is a simplified modethe Hodgkin-Huxley
model and a modification of the FitzHugh-Nagumo ®elod57]. The
Hindmarsh-Rose model differs in many ways from #itgh-Nagumo model in
terms of topology of the phase space, the thredoolspikes, the way the spike
trains are created and how bursting is shut off.[14

H-R model of neuronal activity is used to study speing-bursting
behaviour of the membrane potential. A chain ofoacpotentials emitted by a
single neuron is called a spike train; a sequericgteseotyped events which
occur at regular or irregular intervals [58]. Thardiing behaviour of the
neurons, characterized by the transition of a nedrom resting phase to a
recurring firing state, relies on the slow adapiatvariablez(t) [58]. This
means that the adaptation variable was added texiseng model to terminate

the firing. Each burst will have a definite numlzérspikes unless they are in
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the chaotic regime. This model is based on theajlbbhaviour of the neuron.
Despite being simpler with less governing equatiamg coefficients, the model
IS accurate to neurons seen in biology and wagettda accurately follow the
bursting seen in mollusks [58]. The membrane pakid represented by the
variable,x(t). It is written in dimensionless units. There amgotmore
variablesy(t) andz(t) which denotes the transport of ions across the
membrane through the ion channels. Thus, at angrihshe state of the system
is represented by these time dependent state lewmialihe transport of
sodium and potassium ions is made through fastcltannels and its rate is
measured by(t), which is called the spiking variable. The transpadrother
ions is made through slow channels represented(by which is called the

bursting variable (slow adaptation variable).

The Hindmarsh—Rose model has the mathematical &rensystem of
three nonlinear ordinary differential equationsduséo represent pulse

propagation in neurons

x=y—ax3+bx?—z+ I,

y=c—dx*—y

z=r(s(x—x,)—z (2.3)

Here, x(t)represents the membrane potential and it considased natural
output of the cell. Alsoy(t)and z(t)are recovery and adaptation variables,
which account for fast and slow ion currents respely. I.,; represents the

external stimuli or the applied current. We chotise parameters as = 1,
b=3,c=1,d=57r=0.005,s=4,x, = —g so that the rich phenomena

like bursting and spiking are observed.
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The responses of this model to a current, largejyedds on the values
of p and b. The parameter ‘u’ controls the speedrasfation of the slow
variable z(t). This helps to analyse how efficignthe slow variables are
exchanging the ions. It is not possible by the Hritlgh-Nagumo model. In the
presence of spiking and bursting behaviour, it cltermine the spiking
frequency and the number of spikes per burst. lgrets the resting potential
of the system. The parameter ‘b’ allows one to cwibetween bursting and
spiking behaviour of the neutrons and thus afféotsqualitative behaviour of
the neurons. The model could successfully dispiegular bursting, chaotic
bursting and post inhibitory rebound. Generally afqpeg, three modes of

operation can be distinguished in the full HindrhalRose model:
1. Quiescent
2. Spiking
3. Bursting

The quiescent mode corresponds to the absencaldé stycles. Spiking
means the continuous generation of action poterditder regular or irregular
but with no clear formation of packets of spikearding on the contrary means
that action potentials arrive in clear bursts, safeal by clear, regular or

irregular silent periods. These can be illustratsitig the figure below.
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Figure 2.15: Different modes of operation in Hindmarsh- Rose etdddapted
from [56]).

2.4.1.4 Neuron model with Josephson Junction

Josephson Junctions are two superconductors segaifay thin
insulating barrier. Here phase difference of etectacross the barrier controls
the electrical properties including voltage andrent across the junction

Voltage developed above critical current is

— (%) d¢ _h
V= (271) dt Where Po = e (2-4)

Current through the circuit can be represented as

i=¢+Tp+sing (2.5)
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Whererl is a damping parameter which depends on resistargteapacitance.

The superconducting circuits containing Josephsmictibns can model
many characteristics of biologically realistic mtsdsuch as action potentials,

firing threshold and refractory periods.

Basic circuit of JJ neuron (Figure 2.14) involvesot Josephson
Junctions connected in a loop. The individual jiord behave like ion
channels. One corresponds to depolarizing currech s Sodium(N% and
other to a hyperpolarizing PotassiunmiKcurrent[59]. It is possible for the
enhancement of model by inclusion of a third jumetilt could allow for

behaviours such as bursting that require at |basétcurrents.

The JJ neuron uses rapid single flux quantum tdoggoHere single
chip can model up to N=10000 neurons. Here simdlatgion potential lasts
about 50 ps.

Control Junction

Lsyn Rsyn R12

AMN—TAMN—
—>

Csyrl 2

L, [ewron]

Pulse Junction

o

Figure 2.16: Circuit diagram of JJ neuron connected to a modiengcal
synapse (adapted from [54]). Many synapses coulthex to a single JJ
Neuron.
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Table 2.1: Biological equivalents of the JJ model

JJ- Neuron Biological equivalent
Flux ¢ = (¢, + @) Membrane Potential
Pulse voltage, Na’ currenty,

Control Voltagev, K" currently

Input currentl;, Synapse current,,,

The dimensionless model of resistive—capacitivesgtisie-shunted
Josephson Junctioncan be described by
. 1 .
X1 :E [l — g(x1)x, — sin(x,) — x3]
Xy=Xq
. 1
x3=B—(x1 — X3) (2.6)
L

Theg(x,) denotes the correlation between voltage and curoén

Josephson Junction.

_( 0366x; <29
9(x) = {0.0661x L. =29 (2.7)

The voltage, phase difference and induction currehtJosephson
Junction are represented ky, X, andx; respectively. | is the external forcing
DC current and the constanfs and g, are the mapped parameters from the

circuit equation.
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2.5 Noise in neurons

Neuronal noise designates random influences ontrdmesmembrane
voltage of single neurons. It can influence thegraission and integration of
signals from other neurons and can alter the firaagivity of neurons in
isolation. Highly nonlinear operations can be perfed by neurons. These
operations involve high gain amplifications and dieeck. Hence small
biochemical and electrochemical fluctuations [6Hncchange whole cell
responses. If the membrane potential is near thiegfithreshold, then the

corresponding action potential is highly sensitv@oise[62].

It is possible to detect and transmit weak perigitimals with threshold
systems. This can be enhanced by presence ofrcadee[63]. This process of
enhancing certain level of noise is known as stsiihaesonance. There are
various sources of noise in neurons. Noise accuesilan each neuron due to
randomness in the cellular machinery. At the biogkal and biophysical level
there are so many stochastic processes in neusonge of the sources of noise
in neurons are mainly due to protein productiongrddation, opening and
closing of ion channels, fusing of synaptic vescldiffusion and binding of

signaling molecules to receptors etc [64].

Large part of the noise experienced by a cortieairon is mainly due
to the intensive and random excitation of synapiies. It has been observed
from in vivo recordings of cortical neurons in awal65] and anesthetized
animals that a spontaneous activity exists andttigatelated spike process can
be considered as Poisson. The origin of irreguégrits still poorly known.
Gerstner and Kistler [66] had shown that we catirdjigish between intrinsic
noise sources that generate stochastic behaviotireakevel of the neuronal
dynamics and extrinsic sources arising from netweflects and synaptic

transmission.
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A permanent noise source is the thermal noise dinkth discrete
nature of electric charge carriers. Fluctuationkdd with this phenomenon are
however of minor importance compared to other ne@&ces in neurons. The
finite number of ion channels is another noise seuMost of the ion channels
have only two states: they are open or closed. €léetrical conductivity of a
patch of membrane is proportional to the numbeomén ion channels. The
conductivity therefore fluctuates and so does thkemtial. Noise is also due to
signal transmission and network effects (extrimgese). Typical examples are
synaptic transmission failures and randomness aitarry and inhibitory
connections. The global networks effects whereetherrandom excitatory or
inhibitory connectivity can produce highly irregulspikes trains even in the

absence of noise.
2.5.1 White Gaussian Noise

White noise is a random signal with equal intensily different
frequencies. It has uniform power distribution &srthe frequency band for the
information system. In discrete time white noiseaigdliscrete signal whose
samples are regarded as uncorrelated random \esiatith zero mean and

finite variance.

If each sample follows a normal distribution witara mean, then the
signal is said to be additive white Gaussian nofsgditive white Gaussian
noise[67] is used in information theory in orderntamic the effect of many

random processes in nature. The Gaussian noissviol normal distribution.

The idea of white noise refers that it has unifgoower across the
frequency band for information system. Gaussiartemhoise is a stationary and
ergodic random processes. It follows a normal ithstion in the time domain

with average time domain value of zero.
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The generalized correlation function of white naise be represented as
X(t) = o%6(t) (2.8)
Wheres? is a positive constant adqt) is the delta function.

White noise is applied in describing random disamdes with small

correlation period. It can be represented in sped#composition as
X = [T e dz(2) (2.9)

The elementary vibrationg*tdz(1), on an average, follows same

intensity at all frequencies

The average squared amplitude is

Eldz()I? =2 dA -0 <A< (2.10)
In practical application white noise follows therfo

X(t) = Xi 6(t — 74) (2.11)

Here k varies betweenco and+co andt_q, 7, Ty, - - form a Poisson
process.X(t) also can be represented as generalized derivafii@oisson

processeg(t)

Y(®) = [T w(t,)X(s)ds = [ w(t, $)dn(s) =T w(t, ) (2.12)
Corresponding average value of squared amplitude is

Eldz(D)|? = %d/l (2.13)
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2.5.2 Levy Noise

Gaussian noise cannot incorporate large burststypatally occurring
in real experiments. dvy processes represents the motion of a point whose
successive displacements are random and indepemderdture. One of the
main feature of simple dvy noise models is its large jump. The skewness
parameter enableséely noise to produce an asymmetric noise distrilmyjtio
which takes a key role on phenomena that transitioetween stable points
occur frequently in a noisy field[68,70]. Gaussidnte noise hardly induce this
type of translations due to its symmetric distribnt Hence levy distribution is
an appropriate choice when one considers realistadels with pulse

phenomena in various systems[69].

Let ¢ denotes the time dependerdvy noise and obeys the probability
density functionL,(¢;0,u), whose characteristic function is represented

by[68]
o(k) = [T dge™ Lo 5(& 0,1 (2.14)

Therefore, forx € (0,1) U (0,2)

@ (k) = exp [ipk — ¥ |k%| (1 — iBsgn(k) tan (%))] (2.15)
and fora =1,
@ (k) = exp [ipk — olk| (1 + ipsgn(k) % lnlkl)] (2.16)

Herea € (0,2)is known as the characeristic exponent and it cenibie
stability index that describes an asymptotic polaer of the Lévy distribution.

The constanf (B € [-1,1]) is the asymmetry or skewness parameter.
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o (o € (0,))is the scale parameter anfu € R) is the mean parameter. The
noise intensity is denoted &= ¢% and hence the Lévy process can also be
represented ak, z(&; D, H). Wheno = 0.5, the stable distribution is calleel

stable Lévy distribution.
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Chapter 3

Nonlinear Feedback Coupling in Hindmarsh —Rose Newns

3.1 Introduction

The nonlinear dynamics of a neuron can generaterrdetistic chaos
under some conditions[83]. Networks of coupled dyital systems exhibit
many interesting behaviours such as spatio-temprabs, pattern formation
and synchronization. Such networks can be usedadeha large variety of

biological and physical systems.

The coupling schemes for different neurons suattlyaamical coupling,
time delay feedback coupling, conjugate couplingfusive coupling[84],
nonlinear coupling [85], Memristor coupling [86]epulsive mean field
interaction, damping effect by an environment[8i] €an be applied to study
amplitude death, oscillation death and various rothgmamical evolutions of
neuron systems. Coupling between same variablég/@for more non-linear
systems may lead to synchronization. This has beleserved in many
physical[88], chemical[89], ecological[90], and loigical systems[91]. This
phenomenon has found many applications in cryppdgraand in secure
communications. Also recent works have shown thatcoupling of nonlinear
elements can invoke interesting phenomena, sudtysteresis, phase locking,
phase shifting, phase flip, amplitude death [92] ascillation death [93].

Neural synchrony is believed to be an importanthmasm underlying
many phenomena in the human brain, including thren&ion of neuronal
assemblies[94]. In the brain, synchronization i®mfassociated with epileptic
form of behaviour[95]. The theoretical and experntaé studies on chaotic

neural dynamics helps to understand higher funstiof brain such as
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adaptation, perception, episodic memory, learnengareness, intentionality,
and thought [83]. The studies of dynamical behavaineurons are relevant in

this context.

Further, recent studies [87] show that when an reatli feedback
coupling through an environment or an externalesysis applied to neurons
there is a tendency for anti-synchronization, atagé death, in phase and out

of phase synchronization[96] etc.

Oscillation quenching in the form of amplitude deatAD) and
oscillation death (OD) are known to appear in dsimly systems under
different coupling schemes. This emergent behaviaucoupled oscillators
occurs when they drive each other to a stable ibguiin. In the case of AD, all
the coupled oscillators are stabilized to one dguuim state which may be the
origin or any other fixed point. But the coupledst®ms are stabilized to
multiple equilibrium states in the case of OD. Tétisange phenomenon was, at
first, explained as an effect of large parametesnmmaitch[97] on coupled
oscillatory systems. Later, AD was also observedwa identical oscillators

when a critical propagation delay [98] is introddide the coupling.

Synchronization of two nonlinear oscillator systemvben coupled
through a memristor like nano scale devices is alsointeresting research
area[99]. Recently its applications on neuromorploemputing, device
modeling, signal processing etc. are reported[1&])-1t is possible to emulate
short term synaptic dynamics with memristive devieéhere memristor have
full potential for building biophysically realisticneural processing
systems[106]. When memristor function as a novelravduzzy computing
system[107] it can be used for creating artificlaiain. The mechanism
underlying the emergence of synchronization betwen memristor-coupled

Hindmarsh—Rose oscillatory neural cells is alseredt of study.
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In the present chapter the model of neurons destrity Hindmarsh-
Rose (H-R) system is examined with various linead aonlinear coupling
schemes. The H-R model is a well-known model thedcdbes the action
potentials[108]. In nervous systems neuron encqditrgnsferring and
integrating information are realized by a seriesaction potentials [109]. This
model equation of H-R neuron describes actuallpr@inear dynamical system
which demonstrates the pulse propagation in neyrand is very important
from biophysical perspectives[109]. Here the cauplistrength summarizes

information distribution between neurons.

Linear indirect synaptic coupling of the H-R news@nd the coupling of
the form of nonlinear cubic feedback are anlaysetthis chapter. The coupling
between two neurons using different memristor &stetal synapse is also
examined. The scope of synchronization, anti-plsgsehronization, amplitude
death, oscillation death, and near death rare spke are also studied. The
work also focuses on the stability of different ptmad systems. The simulation
results of different coupling schemes in H-R nesreshow many interesting

dynamical characteristics of coupled neuron cells.

It is shown that linear coupling, nonlinear feedbamupling and
memristor based coupling establish a pathway to liamdp death and
oscillation death. Amplitude response /death arakphesetting are analyzed in
the present work which is having much importancéhim study of brain cells.
Our work shows possibilities of anti-phase synclration with linear synaptic
coupling, nonlinear cubic feedback coupling anchwihidirectional cubic flux
controlled memristor coupling. The quadratic fluwontrolled memristor
coupling shows many interesting dynamics like néeath rare spikes. Near

Death Experiences (NDEs) are found to occur assaltref neurobiological
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alterations in the brainCognitive, emotional and transcendental elements
comprise NDEs[110].

The study of stability is always a central task manlinear differential
systems. Here the general linear stability andl§gjsfor the dynamics of
nonlinear feedback, cubic flux controlled memristguadratic flux controlled
memristor and exponential flux controlled memristordone. The values of
Lyapunov Exponent (LE) are also computed for theppsed couplings. The
neural systems certainly involve non-linear mecéasi, so the unpredictable
and complex behaviour of neural systems can be ureédy the computation
of Lyapunov Exponents. If physiological signals &aat least one positive
Lyapunov Exponent, they reflect an unstable andediptable system and are
used to define deterministic chaos[111]. The lardds value close to 1,
indicate chaotic behaviour. From our plots it isaclthat among the memristor
couplings H-R neurons coupled with cubic flux colteed memristor exhibits
more chaotic nature. In neural systems this vadlle @ue to relaxed situations
in the brain[111]. This suggests that when subjects exposed to external

sound or reflexologic stimuli, the brain goes intore relaxed state.
3.2 Model and scheme

Hindmarsh —Rose neuron (H-R neuron) model is chasestudy the
spiking-bursting behaviour neurons[87]. This model very important to

analyse biophysical perspectives of neuronal system

The dynamical equation of three-variable H-R neurcan be

represented as
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Xlzxz_axf+bxlz+lext_x3
Yy — 2
X, =c—dx; — X,
%y =1 (S(X = Xo) = Xs)
(3.1)

The variableX represents the membrane potential of a neuron faad t

variables\andX;are related ion currents across the membrane. Here

parameters are chosen as a=1, b=3, d=5, r = 0s8d6,c=1, d«=3.00, k=1.6.
The parameters of the system are chosen suchhthatdividual neurons are in
the bursting state.

3.3 Linear coupling in H-R neurons
3.3.1 Indirect-synaptic coupled H-R neurons

Hindmarsh-Rose system model of neurons is deschipele equations,
which are subjected to linear-synaptic and indiceeipled equations. Here we
take two neurons with excitatory synaptic couplargl an indirect coupling is
introduced between them[87].

. V. -
X1:X2—aX13+bX12+|ext—X3+£U+a)21+exd_Ax)1(4_g))
X, =C—dx? +X,
%, =1(s0q = %)= %,)

V. - X,

X, =X, —ax; +bx; + 1, — X, +au+w,

1+exp(- A(x, - 6)) (3.2

X = C—dX; + Xg
Xs = I'(S(X4 _Xo)_xe)

u:—ku—Ein

i=1,4
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X1, X, andxz represents membrane potential and related fasslamd
ion current variables for the first neuron ang x s andx, are corresponding
variables of second neurom, represents the action potential. The parameter
values are chosen as a=1, b=3, d=5, r=0.006, s=#, Ig~=3.05, k=1.6. The
parameters of the system are chosen such thandhedual neurons are in the

bursting state. Here the synaptic coupling is givey the term

W Vr—xl
2 1+exp(—A(x4—9))

and indirect coupling is achieved by an environm@&ine

last equation which governs the dynamicaiaepresents the active feed back

from both the systems through the environment[87].

There are excitatory or inhibitory synaptic couglidepending upon
whether the synapse is fast or slow[112]. Directapges are activated as soon
as a membrane potential crosses the threshold wdlile the effect of indirect
synapse is to introduce a delay from the time wwllator jumps up until the

time the other feels the synaptic input.

The time series analysis and corresponding synctaton, antiphase

synchronization and amplitude death plots are emadin section 3.3.1.1.
3.3.1.1 Time series plots for linear indirect synagpc coupling

The effects of synaptic coupling on the time sebelsaviour of neurons
are examined. The chaotic behaviour of indirectaptic coupled neurons

depends on the specific values of parameters ikltReneuron equation

Synchronization

Synchronization behaviour of two linear indirechaptic coupled H-R

neurons is shown through time series analysis. Fbersufficiently large value
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of one coupling parametew{), bursts of both neurons become synchronized as

shown in Figure 3.1.

X1
— — — X4

Variables

A

_2 1 1 1 1
0 200 400 600 800 1000

Time

Figure 3.1 Time series of the first variable&;and x,) of indirect and
synaptically coupled neurons show synchronizatidh.s = 0,w, = 1, the
synchronization behaviour of two neurons is esthbd.

Anti-phase synchronization

Anti-phase synchronization property of linear irdir synaptic coupled
neurons (Figure3.2) is shown through time seriealyars. Here one of

parameter is of low value and other is of high ealu
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Variables

Time

Figure 3.2: Time series of indirect and synaptic coupled nesirexhibits anti-
phase synchronization for the values of couplingngjthss =1and w, = 0.

Amplitude death

For higher values of coupling parameters, amplitddath of indirect
synaptic coupled neurons is established througe semies analysis ofandx,

as shown in Figure 3.3. Here oscillation of two no@is comes to a common

steady state condition.
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Variables

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

time

Figure 3.3 Time series plots of indirect and synaptic codpl-R neurons
evolves into amplitude death condition for highealues of both of the
coupling/ control parametersand w,.

We have also identified the regions of amplitudatdesynchronization
and anti-phase synchronization in the two neurastesy for linear, indirect
synaptic coupling for various values of couplinggmaeters (Figure 3.4). The
regions are identified by correlation analysis[8@¢ne synchronization, anti-
phase synchronization and amplitude death are fooirednerge in. When one
of the control or coupling parameter is set ahhiglue, synchronization or

anti-phase synchronization regions are obtained.

75



Chapter 3

108

|08

Figure 3.4: Amplitude death, synchronization and anti-phaselsgonization
regions througle — w, plot. Regions are found by varying coupling strengths.

Parameter range is selected as [0:0.5:5] and &, = [0:0.2:1.2].

Synchronization and anti-phase synchronizationoregiobtained are depicted
through yellow and dark blue color in the abovet.plor higher values of

control parameters amplitude death behaviour isnsethich is shown by light

green region in the figure.

Due to rigorous mathematical calculations, stabadmalysis of synaptic

coupled H-R neuron is not done.
3.3.1.2 Lyapunov Exponent plot for synaptic coupledi-R neurons

Here we studied dynamics of synaptic coupled systimough

Lyapunov Exponent (LE) plot as shown in Figure 3be increased LE value
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reflects greater sensitivity to initial conditioasd characterizes unpredictable

variations, while low value indicate the regulartythe system.

Lyapunov exponents

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time

Figure 3.5: Lyapunov Exponent plot for linear synaptic couptedR neurons.

3.4 Nonlinear feedback coupling in H-R neurons

In this section the dynamical behaviour of two Hi@urons is examined
where cubic nonlinear coupling is adopted. The tekdity in neuron based
excitable cells is most often associated with thres@nce of a cubic
nonlinearity[113] in the relevant system of diffeti@l equations. When the
nonlinear coupling feedback term of cubic orderadded to the differential
equation representing dynamical evolution of firatiable of H-R model, the
two neurons do not achieve full synchronizationt ®hen a quadratic form of

membrane potential is added to the differential atign representing the
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behaviour of fast current variabl¥, or X;[113], the behaviour of dynamics

exhibits an interesting behaviour. Adding cubic powf membrane potentials
to neuron model helps to understand the anharmymicthe neural systems. It

is found that the coupling strengths decide thdughom of the system.

In H-R neuron, the recovery variable which is therent variablex, is
influenced by the outward flow of Potassium ionsmediately after the
discharge of action potentials. The Potassium iarreat slows down the
returning of membrane potential to the thresholtberaand it also reduces
frequency of repeating discharge [113]. It alsowl a delay between excitable
simulate and action discharge. So introduction lé guadratic form of
membrane voltage between two neurons results oupling feedback into the
flow of Potassium ions. This means a change ofd93atm ion concentration
affects modulation with respect to the burst indémf H-R neurons which in

turn may affect chaotic synchronization of two rens [113].

Consider the nonlinear feedback coupled H-R neurons

X4:x5—axf+bx§+le>d—x6—£(xf’—xj’) (3.3)
% = C— ¢ =%+ (3¢ =)
%5 = 1(s(%, =%,) = %)

Here the membrane potential of first neuron andr¢fegted ion currents
across the membrane are represented by the varigbleand x3;. Parameters
a, b, c, d, r, s and are chosen as a=1, b=3, d=5, c=1 r =0.006, $x43105

and initial condition of the system is chosen sthat[x;, x,, x3, x4, x5, X | are
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assigned the values [0.3, 0.3, 3.0, 0.2, 0.35, BIree and w,are coupling

parameters. Heudxi3 —Xi) represents nonlinear feedback of cubic order. By

varying the value of coupling strength various dyits of chaotic neurons are

analysed.
3.4.1. Linear stability analysis

We present an analysis of stability of the steathtesof two H-R

neurons coupled by non-linear cubic feedback cagpli

%y = f(xg) + e(x® — x43)

Xy = ) + wy(x1? — x42)

Xq = fxg) + (13 — x,3)

Xs = f(xs) + wy(x,% — x12) (3.4)

Here e andw, are coupling parameters. L&f, x, , X, , Xsbe the steady
state of the system, thefiix,, x;)=0, f (x,, X,)=0, f (x4, X,)=0 andf (xs, x5)=0.

Let 11,7m,,7m4, 15, be the inifinitesimal perturbations of the systefs
N1, M2, M4 M5 GrOWS X4, X, X, , andxs move away from steady state and if these
values of decay to zero, the variable valuesxgfx,, x,, andxs move towards

steady state.

To obtain stability of the steady state of systemws,write variational
equations formed by linearizing above equations.

=% =f( +n1) (3.5)

Using Taylor expansion and neglecting higher otdens,
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M =1 f'(x1, %) (3.6)
From equation (3.4 ) and ( 3.6)we get

= f'Gedny + emi —ni) (3.7a)
Ny = f'(x)ns + (i — i) (3.7b)

Let the synchronization and antisynchronization desties are

expressed through the variables,,andn,,; respectively. Then

Nsyn = M1 — Ma @8N Ngpe; = N1 + 174

hsyn =1N1—1N4

Nanti = N1+ (3.8)
So condition for synchronization is obtained as

gy = [FELLCD g [FOLED] e =0 —nf —nd) (3.9)

Considering the time average valuef6fx;) andf'(x,) are approximately

same and are replaced by effective constant walthee equation changes as

hsyn = TNsyn (3.10)

From equation (3.10), it is clear that cubic orfisdback alone doesn’t

give a complete synchronization.

Similarly for other set of variables condition betes
Neyn =12 = 1s

=T Nsyn +202(f — i) (3.11)
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From equation (3.11), it is clear that synchronarats achieved through
the term 2w,(n? — n3). This is in agreement with numerical analysis I t

coupling scheme.

Anti-synchronization properties are obtained fa@ slystem through the
same analysis described above.

Nanti = N1+
3 3

=T Nanti + 25(771 - 774)

=T Nanti +2€Nsyn (M5 + M1Ma +N3) (3.12)
Second term in the above equation leads to antggnzation.
Similarly, for other set variables,
Nanti = N2H15

= Nanti (3-13)

From equation (3.12) and (3.13) Jacobian matrixrigen as

T 0
/= <28(n% + 1114 + 13) r) (3.14)

Jacobin value for equations (3.7) and (3.10) is alculated as above
and Eigen values obtained may be real which istipesior negative and
corresponding fixed point is of stable node or abl&t node.

Eigen value of the above equation can be obtaised a

A=1F 12+ 8et(m3 —13) (3.15)
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Antisynchronization and Synchronization tendeneieseffective when
the corresponding, Lyapunov Exponents, i.e., raglpf the eigen values are

negative. So condition for stability is obtainechas> n3.
3.4.2 Time series plot of coupled neurons with cubiorder feed back
Synchronization

Synchronization of two nonlinear cubic feedbackped H-R neurons
are shown through time series analysis. As nonligeapling replaces linear
coupling, the synchronization pattern given inUf&@3.1 changes to behavior
shown in Figure 3.6 which shows synchronization fieft variables for
lext=3.05. The bursting behavior for synchronizatiexhibited by the H-R
system is an additional feature shown by the p@sehnonlinear coupling.

=ML LW

Time

Figure 3.6. Time series plots of first variables show synciization of coupled
neurons. Bursting synchronization of neurons withlmear feedback in cubic
order are obtained far= 1, w,=1, lx= 3.05.
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Anti-phase synchronization

The anti-phase synchronization of nonlinear cul@edback coupled
neurons is established through time series andiystertain values of coupling
parameters and current. Here first variables of twopled H-R neurons are
showing anti-phase properties, which are depidtedugh blue and red colour
as shown in Figure 3.7. The plot is obtained foe tharameter values
€ =0,w,=0.001, L= 3.00.

o
)]
—F——F——F———F—

Variables

1
-
)]

b
Lo

o T— —T-
\\\:;:

100 200 300 400 500 600

Figure 3.7: Time series plots of first variables shows antiggha
synchronization of coupled neurons with cubic nomedr feedback with
parameter value$ = 0, w, = 0.001, I, = 3.00.

The regions of synchronization, anti phase syndhation and
amplitude death for different ranges of controlgmaeters are depicted through
Figure 3.8. Here control or coupling parameters setected in the range
€= [0:0.5:5] andw, = [0: 0.2:1.6].
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108

106

104

102

Figure 3.8: Anti phase synchronization, synchronization andlaoge death of
cubic feedback coupled neurons are examined throug, plot. When the
value ofe =[0.9:0.5:5] and =[0:0.5:1.6] synchronizatiomians are observed
and is shown by yellow color in the figure.For lamge ofe = [0:0.5:0.7] and
[0:0.5:1.6],dark blue region shows ant-synchromaratAlso for the values of
e = [0.75:0.5:0.89] and [0:0.5:0.4], amplitude de&hobserved, depicted by
light green.

3.4.3 Lyapunov exponent plot for nonlinear cubicdedback coupling in

H-R neurons

The behaviour of nonlinear cubic feedback coupledR kheuron is
analysed through Lyapunov Exponent (LE) plot whishfound to exhibit

similar behaviour as in Figure 3.5. Here the lowudtues indicate regularity of
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the coupling method. Largest LE is obtained inrdmege -1.1834 to -1.1832. It
is in agreement with synchronization stability bistsystem observed by Fang
and etal.[107].

3.5. Memristor based coupling in neurons

In 1971, Leon Chua postulated the fourth basic udirelement
memristor[114, 115] and established a missing dorise relationship between
the electrical charge and the magnetic flux. Udiagis Carroll’'s portmanteau
naming technique[116], Chua named this hypothetwahlinear device as
memristor (memory + resistor). It demonstrated higsteresis property of the
ferromagnetic core memory and also the dissipatihagacteristics of a resistor.
Clearly, in such devices, the nonlinear resistara@ebe memorized indefinitely

by controlling the flow of the electrical chargetbe magnetic flux[117].

FReasis Frse -3 D s it
e = feli g

o

— 50— | ="UUlr=

| [ S i P T
g = Lkl e = AAsS

-

Figure 3.9 Comparison of resistor, capacitor, inductor arenmmstor

PiErTIEIAE W bR

Memristor are nano scale devices. Although menrigtml memristive

systems have been introduced a long time ago by Ciqplications of them
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have developed recently after the invention of na@o—scale HP memristor
[118].

A memristor consists of a variable resistance asl ttvo terminals. In
DRAM a memristor can replace the capacitor which s@re one bit of data.
Then this memory is not volatile, has no leakageegyovhich at the same time
is more stable. Also in comparison with flash meynahis memory has
improved speed and scalability. A memristor can alsnnect electric charge to
magnetic flux. As its resistive value is retainedan increase flow of current in

one direction and can decrease flow of currenthéndpposite direction.

Memristor finds improved applications[119] in logarcuits and in
digital memory. In neuromorphic systems they canaacbasic building blocks
where they behave like biological synapses. Neuranmd synapses act as
electronic systems. Besides being at the basiserf-generation ultra dense
non-volatile memories, a nano scale memristor dlas the potential to
reproduce the behaviour of a biological synapse.rAa living creature the
weight of a synapse is adapted by the ionic flowugh it, so the conductance
of a memristor is adjusted by the flux across erdharge through it depending

on its controlling source[86].
The proposed memristor are having cubic nonlimgantich is
represented bﬂ(@=kl¢+&ﬁ It is a smooth continous cubic functionand

corresponding memductance W(@:ki+3k3¢; It is used as a memristive

coupling term and will act as a artifical synapséween coupled neuron cells.

Hence they are responsible for chaotic dynami¢kersystem.

In this section two Hindmarsh-Rose neurons areidered, coupled via
a memristive device mimicking a biological synapEke investigation is done
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on how the dynamics of the memristive element mayjluénce the

synchronization and other interesting properties.
3.5.1 Memristor controlled by cubic order flux

Flux controlled memristor is used to emulate theitatory and
inhibitory synaptic connection between the neur®8p[ It is used as a
memristive coupling term and will act as a artifisgnapse between coupled

neuron cells.

Consider the memristive mutual coupled H-R equatasbelow

%4 = X, —ax +hxy + g _Xs_(a+ﬁu2)()(1_x4)
X, =C—dx’ — X,

%, = (s = %)= %)

X, = X —axC +hxZ +1 —xe—(a+,8u2)(x4—x1)
X, =C—dx? — X

% = (s = %) =)
u=x-x (3.13)

The variableX represents the membrane potential of a neurorntrend

variables X, and X;are related ion currents across the membrane. \\imete

X, gives the coupling between the neurons achievesugffr memriston is

flux variable due to memristor. Here the memduataleem(a + fu?) function
as cubic flux controlled memristive term and acttagpling synapse between

two neurons.
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3.5.1.1. Linear stability analysis of cubic flux cotrolled memristor coupling

We present the analysis of stability of the stestdye of two H-R

neurons coupled by cubic flux controlled memristor.

% = f(x1) —c(x +pu?)(x; — x4)

Xy = f () + c(x +u?) (1 — x4)

u=(x; — x4) (3.14)

Herex andBare coupling parameters and c is a constantxlLet, , u

be the steady state of the system, th€fx;,x;)=0, f(x, x,)=0 and
f(u,u) =0.

Let ni,n4,u be the infinitesimal perturbations of the systeranfyn, z grows
X1, x4 and u move away from steady state, if these values deoayero

X1, X4 and u move towards steady state.

To obtain stability of the steady state of two eys$, we write

variational equations formed by linearizing equats below.
M=% = f(x +n)

Using Taylor expansion and neglecting higher otdens,

M =n1f" (g, %)

i = f'Ce)ny — cla + pu?) (ey — x4)

s = f'(x)ng + cla + Bu?) (x; — x4) (3.15)
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Let the synchronization and antisynchronizationdeties are expressed

through the variableg,,, andn,,.;respectively.

Then

Nsyn =M1 — Na @NANGne = N1 + 14 (3.16 a)
Nsyn = N1~ M4 (3.16b)
Nanti = N1+1Ma (3.16¢)

From equation (3.14) equation (3.16 a) changes as
. _ [ ) +f" (x4) [/ ) —f (x4)
Nsyn = [%] Nsyn + [%] Nanti — ZC(CZ + ﬁuz)nsyn (3-17)

Considering the time average value f6fx;) andf'(x,)are
approximately same and replaced by effective comhstaluer, equation

changes as

Hsyn = T Nsyn-2¢(@ + fuINsyn, (3.18.a)
Similarly we get,

Nanti = T Nanti (3.18.b)
U=CNgyn (3.18.0)
From equation (3.18 a) Lyapunov Exponent is obthame

A=1—2c(a+ pu? (3.19)
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The synchronization and anti synchronization tecaEneffective when
corresponding Lyapunov Exponents, i..e, real padigenvalues are negative.

So condition for stability is given as below.

T

f>—"—-a (3.20.)

2cu?

These synchronization conditions are compatiblen vifite numerical
evaluation. Also the antisynchronization properaes not exactly observed for

memristor coupled systems .lIt is also evident ftbenequation (3.18.b).

3.5.1.2 Time series plot of coupled neurons withubic flux controlled

memristor
Bidirectional coupling

In bidirectional coupling both neurons are influeddy a memristor of
cubic order flux. Synchronization and amplitudettdaehaviour are exhibited

by the system as described below.
Synchronization behaviour in bidirectional coupling

Synchronization of H-R neurons coupled by cubicx floontrolled
memristor shows chaotic bursting synchronizatiantfie parameters a=1, b=3,
d=5, c=1, a=0.05, p=0.5 and {=3. Time series plots of first
variablesx; and x, shows synchronization pattern where the numbepikkes
per burst is irregular. The dynamics exhibitedesyvsimilar to that of coupled
neurons with cubic order feed back and it is showrRigure 3.6.

Amplitude death

As the values of, p and current are changed, time series plots ofccubi

flux controlled memristor coupled H-R neurons shoesamplitude death state
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as shown in Figure 3.10. Here first variables afpged H-R neurons comes to a
common stady state which was unstable other wigepBlnameter values are set

asa=0.005,B= 0, kx=3 for obtaining the plot.

Variables

| | | | | | | 1 |
0 50 100 150 200 250 300 350 400 450 500

time

Figure 3.1Q Time series plots of first variables,andx,of cubic flux
controlled memristor shows amplitude death statbeithe parameter values
are set as=0.005,p= 0, kx=3 amplitude death states of neurons are emerging
out.

Unidirectional coupling

In unidirectional coupling only one neuron is teggd by a memristor
of cubic order flux while the other neuron is not ughced by coupling. In the
scenario represented by equation (3.13), as thdirebiional coupling is

replaced with unidirectional coupling of cubic fleentrolled memristor, the

variable (the membrane potential of first neurapot infulenced by the term

(a+,312)(xl—x4). The dynamics observed are shown through Figuté-3.
Figure 3.13.
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Synchronization behaviour in unidirectional coupling

Synchronization pattern of two H-R neurons coupigth unidirectional
cubic flux controlled memristor is shown in Figugell through time series
analysis. Here bursting synchronization of bidi@tl coupling is replaced by
the tonic spiking in unidirectional coupling. Asetmeuron is stimulated, the
inhibitory ion currents will dominate the stimulagi current and corresponding
membrane potential will decrease. Persistence isf dhtivity leads to tonic
spiking. The plot is obtained for the parametewuegal Ly =2.8,a« =0.001, and
p=0.02.

2.5 . . T .

Variables

0 10 20 30
time

Figure 3.11 Time series plots of first variablest;and x,shows
synchronization pattern in unidirectional coupledbic flux controlled
memristor. The parameters are choseneas2.8,a¢=0.001, ands=0.02 for
obtaining tonic synchronization pattern of neurons.
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Tonic spiking of one neuron and the inactive statef the other neuron in

unidirectional coupling

Time series analysis of two H-R neurons coupled witidirectional
cubic flux controlled memristor leads to tonic spik of the neuron which is
coupled with and inactive or death state of theoupted neuron as shown in
Figure 3.12.
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Figure 3.12: Time series plots of first variables and x,of the two coupled
neurons. Here the coupling is unidirectional thitodigx controlled memristor.
With parameter values d=2.82y1=4,a =1,ands=0.01 tonic spiking is shown

up for one neuron and inactive or death state hib&ed by the uncoupled
neuron.

Bursting and death of neuron

As the parameters are changed, the tonic spiking @iay to bursting
for the coupled neuron while the uncoupled neusmmains in the resting state
for two H-R neurons coupled with unidirectional subflux controlled
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memristor. The dynamics is established through senges plots (Figure 3.13)
for the parameter valueg=5, o= 0.02 ands=0.

2 T T T T
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— — — X4
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Figure 3.13: Time evolution of first variablesy and x,for unidirectional

coupled cubic flux controlled memristor. As thegaeter is changed ted=5,
0=0.02 and =0, coupled neuron exhibits the bursting but thieeptneuron

seems to be inactive.

Anti-phase dynamics

For still other parameter values it is interestiogreport anti phase
synchronization of two H-R neurons with unidireatd coupled cubic flux
controlled memristor as shown in Figure 3.14. Hauesting behaviour of two
neurons shows anti phase dynamics. To obtain tisgedeplot, parameter

values are set agd=2.8,a0=0.02, ands=0.3.
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Figure 3.14 Time series plots of first variables andx,shows anti phase
synchronization in unidirectional coupled by culliex controlled memristor.
Anti-phase dynamics obtained above has some sityilaith that of time
series plot of Firing pattern of autapic neuron[[larameters are chosen as
lext=2.8, a=0.02, ands=0.3.

3.5.1.3 Lyapunov exponent plot

The dynamics of Lyapunov Exponents for H-R neuroaspled with
cubic flux controlled memristor is shown in Figusel5. It is observed that
largest LE value is close to 1 (0.9727). Positiatug of LE’s obtained due to
coupling having much importance. For arterial blopessure time series,
ocular aberration dynamics of human eye etc. shpasitive Lyapunov
Exponents. So our coupling scheme can be refeoredrhe neural base system

analysis.
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Dynamics of Lyapunov exponents
1 — — 1 T T T

Lyapunov exponents
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Figure 3.15 Lyapunov Exponent plot for cubic flux controllademristor
coupled with H-R neurons.

3.5.2 Memristor controlled by quadratic flux

The properties of memristor controlled by quadréiix with varying
coupling strengths and external currents are sdudi®r the quadratic flux-
controlled memristor [121] studied in this sectidhe memristance can be

expressed as:

M(@=ad+pp+y (3.21)

We can see thaiy (p) is linear flux-controlled ag =0. Memristor of

this type has been researched widely, so we fonubeinfluence of quadratic

type coupling in H-R neuron. The terM(¢)=0’¢+,3¢+y act as quadratic

memristive function.
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%, =%, —ax +bx + 1, =%, —(a@? + Bp+ y)x - x,)
X, =C—dx — X,
Xq :r(s(xl—xo)—x3)

.>'<4:x5—ax§’+bx§+lext—XG—(0¢2+ﬂ40+V)(X4—X1) (3.22)
% =C—dxg =X

% = 1(s(%, = %)= %)

u=x-X,

The variable; represents the membrane potential of a neuron faed t

variables x, and Xare related ion currents across the membrane fer fi

neuron. Here parameters are taken as a=1, b=3,cd25d=2.84, r=0.005, s=4
and k=1.

3.5.2.1 Linear stability analysis

As in section 3.5.1, we can do linear stability lgsia of quadratic flux
controlled memristor. Then the condition for stapilin quadratic flux

controlled memristor is obtained as

B> (- ap) (3.23)

2Cop

3.5.2.2 Phase portrait and time series plots of meistor coupled neurons

controlled by quadratic flux
Synchronization

Synchronization of two H-R neurons coupled with dpaéic flux

controlled memristor is shown through e~ Xplot. Parameter values are
selected as:k =2,a0=2,5=1 andy=1. Here two neurons behave in the same way

and full synchronization is achieved as shown guFe 3.16.
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Figure 3.16: Phase portrait of second variables, and xsshows
synchronization pattern of memristor controlled byuadratic flux.
Synchronization is observed for the parametgrs2,a =2,5=1 and y=1.

Oscillation death

Time series of two variableg and x, of H-R neurons coupled with

quadratic flux controlled memristor shows oscitlatideath for the parameter

values ly =1.4,0=1,5=0 and y=1. The coupled two neurons takes a stable rest

state as depicted in Figure. 3.17.
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X1 [ ]
— — —X4

Variables

time

Figure 3.17: Time series plots of first variables and x, of neurons with
quadratic flux controlled memristor. With parametatues {4 =1.4,a0=1,5=0

and y=1 oscillation deaths of neurons which are corgblby memristor having
guadratic flux are shown.

Near death spikes

For someparameter values an interesting dynamieshgited by the
H-R neurons which are coupled via quadratic fluntomlled memristor. Rare
spikes are observed with time variation of varialdétwo neurons before death
(Near Death rare Spikes [122-124]). Experimentatlyis observed that
moments before death, the patients experiencessh inubrain wave activity,
with the spikes occuring simultaneously for two gledl neurons and with
approximately of same intensity and duration arotivedtime slot 125 which is

shown in Figure 3.18.
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Figure 3.17: Time series plots of first variables, and x, of neurons with
guadratic flux controlled Memristor. Dynamics ol for parameter values
lext =4, a =5, =1, y=0 and =3, a =2, =1, y=0 shows phenomena like near
death rare spikes.

The near death spikes are supported by experimebsarvation [122—
124]. Experimentalists implanted several electrode®ss the brains of nine
rats to measure their brain waves rhythmic puldasearal activity depending
on their frequency. The rats were sedated withthats, and then killed with
either by a lethal injection that stopped theirrteeor a fatal dose of carbon
dioxide, after the hearts have stopped, most detteainwaves weakened with
time. But one set, the low-gamma waves producechwigirons fire between
25-55 times per second, became stronger for a peebd. The activity in
different parts of their brains also became moracksonized. Their low-
gamma waves, in particular, became synchronizedh ey were in their near-
death state than when they were anaesthetizedakeag\ii22—124].
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3.5.2.3 Lyapunov exponent plot

Lyapunov exponent plot for H-R neurons coupled vgtradratic flux
controlled memristor dynamics is shown through FegB.19. Sensitivity to
initial condition of systems and its regularity @eamined through plot.

05 T T T

Lyapunov exponents

-3
100 200 300 400 500 600 700 800 900 1000
Time

Figure 3.19: Lyapunov exponent plot for quadratic flux contrdllsnemristor
coupled with H-R neurons.

3.5.3 Memristor controlled by exponential flux

The cubic flux controlled memristor have limitatoom situations which
demand a larger current[125] and not compatibleh wiérminal voltage
fluctuations. Here the memductance or Memristahways keep increasing or
decreasing until polarity of voltages or currenvemses. The proposed
exponential model obeys stable variation law of tiheemductance

(memristance) under various excitation voltages[123%d hence this model
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meet large current situations. So the memristotrobed by exponential flux is

chosen for coupling parameter.

A novel model of the flux-controlled memristor slacted as below

a(¢) = kbla™ -1) (3.23)

Where a)o, and kb ao. Then, the memductance function of this

memristor can be given by
W (@)= a"kblna (3.24)

Whenb(0o, above equation model is a decremented flux-cbettanemristor,
that is, it's Memductance is monotonically decregs{increasing) when the
supply voltage is positive (negative). On the camntr when b)O0,

equation presents an incremental flux-controllednm&tor.

Consider the exponential flux controlled H-R moelglations as

X =X,~x2+bx2+ 1, —x,—a “kbina(x, - x,)
X, =C—dxZ — X,

3 r(S(Xl - Xo)_ Xs)

L =X = xC+bx2+ 1, —x,—a™kbIna(x, - x)

X

X

v — 2

X, =Cc—dx; — X
X

u

I’(S(X4 - Xo)_ Xs)
X, = %Xy

3

(3.25)

The variablex; represents membrane potential of a neuron and the

variables X, and X; are related ion currents across the membrane fstr fi

102



Nonlinear Feedback Coupling in Hindmarsh —Rose Neunrs

neuron. The ter™kbIn a is a function that act as exponential flux con#adll
memristor. The parameters take values b=3, c=1,, d=0.005, a=e,
b=50l0g(0.5), k=10. With the variation of extermakrent various dynamics are

obtained as in Figure. 3.14-Figure.3.17.
3.5.3.1 Linear stability analysis

For exponentially flux controlled memristor cougiwith H-R neurons,

the condition for stability is found to be
7 < 2a%kblna (3.26)

For decrimental flux controlled memristor (b<O0) tlwendition for

stability is reversed.

3.5.3.2 Phase portrait and time series plot of menmstor coupled neurons

controlled by exponential flux

Synchronization

Phase portrait plots of second variabMsand X of two H-R neurons

coupled with exponential flux controlled memristshows synchronization

similar to that of quadratic flux controlled mentois(Figure.3.15).
Response to external current

The response of membrane potential of two coupledrans with
respect to time is examined in detail which is showFigure. 3. 20. When the
external current is set t@,d = 3, the neuron is stimulated and the membrane
potential will change. Initially due to stimulatingnic currents, the membrane
potential will increase. After a certain point, timhibitory ionic currents will

dominate the stimulating currents and the membyaotential will decrease
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which Results in a spike which represents actioeng@l. If this behaviour is

persistent, then it is called tonic spiking.

(@)

AN

o 100 200 300 400 500 600 700 800 900 1000
time

Figure 3.20: (a) Three dimensionak, x,, xsplot shows dynamics of the
system.(b) Time series plots of first variables and x, of neurons which are
coupled through a memristor controlled by exporaniux. When external
current is set tos4:= 3, tonic spike synchronization of neurons arexiiatd.
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Bursting synchronization

As the external current is changed bursting symabation is resulted in
and the corresponding phase space plot of two HeRams coupled with
exponential flux controlled memristor shows (Figu®21) interesting

dynamics.
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Figure 3.21: (a) Dynamical behaviour of system shown through three
dimensionalk, x,, x5 plot. (b)Time series plot of first variablesand x, shows

bursting synchronization of neurons where coupighdue to memristor which
is controlled by exponentially varying flux and degxternal current is set to

| =4.
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Oscillation death

Time series plots of first variables; and x, of two H-R neurons
coupled with exponential flux controlled memrisstrows oscillation death for
certain parameter values. If the parameter valués @ and lext are chosen as
a=1, b=0.01, d=2.82, ang,#3.8, the two neurons approach a stable rest state

as in the case of quadratic flux controlled Menorists shown inFigure3.16.
3.5.3.3 Lyapunov exponent plot

Dynamics of Lyapunov Exponent of H-R neurons codpheith
exponential flux controlled memristor is shown imge 3.22. Higher value
reflects greater sensitivity and low value showgularity. Largest LE values
are in range -1.0457 to -1.0456.

Dynamics of Lyapunov exponents

Lyapunov exponents
>
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Time

Figure 3.22: Lyapunov Exponent plot for exponentially flux carited
memristor coupled with H-R neurons.
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Among different memristor coupling, cubic flux carited memristor
coupling in H-R neurons shows more chaotic behavince it has largest

Lyapunov value is close to one.
3.6. Summary

The present work describes the possibilities oédmand nonlinear
coupling in neurons. It has implications for thelgsis and characterization of

neuronal interactions.

Linear models of effective connectivity in brairsame that the multiple
inputs to a brain region are linearly separablas Hssumption does not allow
activity-dependent connections that are expressashé context which is not
reflected in the other. This problem is overcomealdgpting nonlinear models
that include nonlinear interactions among inputeese interactions can be
considered as a context- or activity-dependent nadidn of the influence that

one region exerts over another [126].

The present work establishes the fact that indisgectaptic coupling
dynamics of H-R neurons exhibits the propertie® l&ynchronization, anti
phase synchronization and amplitude death. As fsdboupling is varying in

a cubic order, synchronization and antisynchrormorategions are observed.

Different memristor based couplings are also taketo account. Both
bidirectional and unidirectional coupling of culflax controlled Memristor in
H-R neurons are examined. Mutual coupling of twaroas governed by H-R
equations exhibits the properties of synchroniratio tonic spiking and
bursting. It also exhibits the property of amplgudeath for certain values of
coupling parameters. The unidirectional couplingoveh tonic spiking or
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bursting for one of the neurons and death like phenon for the uncoupled

neuron depending upon the coupling coefficient @xtérnal current.

Memristor coupling of quadratic order shows the dwebur of
synchronization, oscillation death and other irgeng dynamics like near death
rare spikes for the neurons. Memristor controllgd dxponential flux also
showed the synchronization and oscillation deathnlear death rare spikes are

found to be absent.

We have done the general stability analysis forouesrcouplings in H-R
neurons. Lyapunov Exponent plots are also examine@&ach case. It is
observed that among different Memristor based dogptubic flux controlled

Memristor shows more chaotic nature.

The present work is on the effect of different dogp schemes in
biological neuron model. The rich dynamical behaviexhibited by the
coupled systems depends upon system parametersvale also intend to
extend the work to latest developments in the fietdMemristor, such as
Spintronic memristor, and to its potential appli@as in neuromorphic circuits.
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Chapter 4
Influence of Memristor and Noise on H-R neurons

4.1. Introduction

When noise and external electromagnetic radiatsoormposed on the
neuronal model, it can influence mode transitionetéctric activities and
synchronization pattern formation. In the presdrdpter improved Hindmarsh
Rose neuron model (H-R neuron) is selected anceldnetrical activity of the
neuron model under the influence of quadratic aqmbeential flux controlled
memristor is analysed. Different neuronal respot®&ards noise which acts as
the control parameter are studied. The Hamiltorrggnes computed and the
stability analysis for the system is performed. é&the work gives a pathway
to understand influence of electromagnetic flux e overall activity of
neurons and it is established that it introducegh monlinearity to the neuron

model.

The role of electrical activity of neurons for neprotection [127] is an
emergent research field. When neuron is exposedetiromagnetic radiation,
the effect of radiation could be described by auniveent current in neuronal
loop [128] and the corresponding electrical adteit could be detected.
Experimental studies of complex electrical actestiin cardiac tissues with
electromagnetic induction are reported which sat these activities causes

spiral waves, encounter breakup and turbulenckectresal activities [129].

Nowadays the electromagnetic induction studies J[180 neuronal
networks are carried out where memristor is usetkseribe the memory effect
which remembers the magnetic flux across the memebod neurons or cells.
Memristors (memory+ resistors) are nano scale ésyiwhere the nonlinear

resistance can be memorized indefinitely by cohigl the flow of the
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electrical charge or the magnetic flux[131,132].eThon —volatile memory
property of a memristor is a consequence of staperndent ohms law. So it
affects the potential difference and may lead &iractural change due to the
supplied electrical energy[133]. The ‘on’ staterépresented by a memory
function. A conservation function gives the timeyrmg resistance which
represents the ‘off state[133]. It can be usedaasynapse in hardware of
artificial neural networks. The magnetic effect doememristor is similar to
that of atomic scale magnetic susceptibility exieithiby NMR spectroscopy
and of MRI imaging[134]. Memristive neural netwastudies help to integrate
information in different functionally specializeégions of brain. Further, the
neuronal synchronization helps to encode infornmaitiobrain through different
coherent states which arise through temporal pesttef neural activity and it

emulates even an optical illusion [135,136].

Recent studies of coupled networks under electroetag induction
show that the synchronization of neurons also caaastargement of frequency
spectrum and self-induction effect{137]. When eax&r electromagnetic
radiation is imposed on the Fitzhugh—Nagumo neunaalel[138,65], it helps

to detect the mode transition of electrical adtegtin a myocardial cell.

Noise also can influence and enhance the syncltatoiz pattern
formation in excitable systems[139]. The local metgn flux density due to
neurons is very much less than that of the Earth&gnetic field. So the
surrounding noise always becomes comparable toonalimagnetic signal.
The influence of noise can be studied by changitsy frequency or
intensity[140]. It is also reported [141] that infmation processing due to

synchrony can be modulated by noise.

Energy is an important parameter which influencée tnormal

behaviour of brain and its usage mainly dependshenrate of variation of
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action potential and also on the fraction used tginbfor signaling activity.
Various studies [142-144] are done on metabolicrgyndor neural activity,
energy efficient neural codes, collective behavioubiological oscillators and
its energy cost. It is reported that the energyigh dependent on the mode of
electrical activities instead of the external fagccurrents directly and a smaller
energy occurs under bursting states[145]. The shalgs to understand the
onset of epilepsy (bursting synchronization induegdlepsy makes energy
release). The calculation of Hamilton energy of tle@iron systems based on
Helmholtz’'s theorem can explain neurobiological rggestates[146]. It is also
observed that an event based minimum energy irspdesirable clinically for
brain simulation treatment of neurological diseas@ke Parkinson’s
disease)[147 ]. The delayed response of Hamilt@rggnto external forcing
currents confirms that neuron contributes to energgling[148,149]. These
results prompt for further investigation on energgoblems in neuronal

network.

Bifurcation analysis[150] of H-R neuron helps todarstand the
relationship between neural firing patterns whioh iaduced by corresponding
modulations in potassium channel of neuron modeadgdian Gu and et al.[151]
experimentally demonstrated the bifurcations froorsbng to spiking state
predicted by theoretical models. The effect of ek forcing current on
electrical activities of neuron can be predictedhvbifurcation diagram[152].
Transverse Lyapunov Exponent plot[153] confirmscéyanization stability.
Also to determine the neuro-computational propertad cell, bifurcation

analysis is important.

The Hindmarsh-Rose model with fractional order[1%8n give an
explanation to dynamical properties of neuronattele activities. It is observed

that autapse-modulated neuron model and the tiragsng electromagnetic
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field can modulate the membrane potential of nearmmh even the time delay in
autapse can suppress the bursting in neuronal lempb5]. Recent studies
[156] show that field coupling is also an effectway to contribute towards
electromagnetic induction on neurons, when synagtipling is not available.
Lulu Lu and et al. [152] have examined the modect&ln in neural activities
and has done the corresponding bifurcation analysider high and low
frequency current to study electromagnetic inductaf four-variable H-R

model with cubic flux controlled memristor. Alsdudies of Mengyan Ge and
et al [157] showed that for a magnetic flux driveauron model, different
responses in electrical activities are resultecumader periodic frequency of

electromagnetic radiation and in the presence ofs&an white noise.

Studies of S.R. Hudson and et al. [158] have ifiedtthat the quadratic
flux minimizing surfaces can be constructed fooidal magnetic fields. The
memory based quadratic and exponential flux indactican influence
conductance in channels including channel blockirgP]. Also, studies[160]
show that mathematical model can interpret the xy@atal observation of
exponential variation of fluxes which permit to kxate the extent to which the
membrane is affected by external flux. Under thesetexts it seems to be
relevant to examine influence of quadratic and eeptial flux controlled

memristor on neurons.

In section 4.3 the influence of quadratic flux mhseemristor on the
electric activities properties of improved H-R mbieanalysed. The dynamics
is examined for periodic and non periodicforcingrent. Bifurcation diagram
of Inter spike interval versus current and the egponding Lyapunov Exponent
for the system is plotted. In Section 4.5, the cffef noise on electromagnetic
induction of neuron is examined. Section 4.6 givesenergy of improved H-R

model under quadratic flux and the correspondingnenical analysis. In
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Section 4.7, the study is extended on coupled msurmder quadratic and
exponential flux and the Transverse Lyapunov expbrmot for coupled

neurons under quadratic flux is also analysed.

The studies exhibit the highly interesting rich pbmena such as
transitions from the rest state to the firing state from the spiking state to the
bursting states in the four variable H-R neuron etedvith these different flux
based memristors. Also, the states exhibit tonikirsp and oscillation deaths
under various external conditions. When noise teddo the neuronal model
the suppression of these activities is achieve@ mlode transitions exhibited
are different from that of improved H-R neuron mioddth cubic flux

controlled memristor in the presence of Gaussiaiewtoise [157,161].

Numerical analysis of Hamilton energy also suppdhe different
transistions in electrical modes. The energy exhidiscontinuous behaviour
with respect to the variation of external currdBifurcation analysis of Inter
spike Interval (ISI) versus current also showseddhce in behaviour when
compared to that of ordinary H-R neuron model amgroved H-R neuron
model with cubic flux based electromagnetic induafi30]. The irregularity in
the behaviour of neurons is also examined througlapunov Exponent
plot[162].

For coupled neurons, synchronization behaviour eftirons under
guadratic flux and noise shows periodic, chaotid tonic type patterns. The
guiescent state and subsequent suppression dftieas are observed for high
values of noise intensity and coupling strengtht Egponential flux under
noise, the synchronization pattern leads to osidhadeath.
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42. Modd and Scheme

The general H-R model in an isolated neuron has leetended to an
improved model of four variables[73,130]. The newaria&ble ¢ incorporate
magnetic flux. Hence this model can be effectived&tect the effect of
electromagnetic radiation by applying external negnflux associated with
electromagnetic field on the dynamical equationrfagnetic flux. The neuron
model is made to interact with memristor. The metori magnetic flux is due

to the flux arising from the ions.

The four —variable H-R neuron model with memristan be written as

Xy =X — axi + bxg — X3 + Loy — kp(@)xg

Xy =c—dx? —x,

%3 =1(s(x; —x0)) — x5

Q= kixy — ky (4.1)

Here the variables,, x,and x; represent the membrane potential, slow
current recovery variable and adaption currenfifet neuron anc,, xsand x
represents corresponding variables for second neditee important electrical
signal in neurons arises from a big voltage chafajethe order of many
millivolts) which is termed as action potential anembrane potential
(spikes)and it occurs in less than a second foramii63]. The parameter
values are selected @as=1,b =3,c =1,d =5,s =4,r = 0.006,x, = —1.6.
External forcing current is represented by the térp and the magnetic flux
across the membrane is denoted by the fourth \‘aripab The memductance

corresponding to the chargg¢) is given byp(¢). Relation among induced
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current, flux and memristor can be understood byad@y's law of
electromagnetic induction[140] as given below.

. _dq(e) _ dq(@)de _ _
L=~ de @t p(@)V =kp(p)x, (4.2)

Here k,x,denotes the changes in magnetic flux induced by lnane
potential andk, @ represents the leakage of magnetic flux. Also tieraction
between membrane potential and magnetic flux isssgmted by the variables k
and k. The effect of electromagnetic induction and cgponding modes of
electrical activities with memristor could be exaed by finding the influence
of the magnetic flux on membrane. Also the tefp(¢p)x,;denotes induced
current and it causes the variation in magnetig fithich in turn generates

Faradic current.
4.3 Electric activitiesin H-R neuron

Different modes in electrical activities are stubligith the help of time
series of membrane potential of neuron. StudieBifurcation diagram of Inter
spike Interval, Lyapunov Exponent, variation of Hiom energy with external
simulation and synchronization are done for thethe respective neuron

models. Synchronization behaviour on coupled neur®also examined.

4.3.1 Electrical activities in an improved H-R neuron under

electromagnetic induction without noise

In this section the study is done on a four vagabtR neuron model
which is made to interact with quadratic flux catied memristor. The
memductance corresponding to the chay@g)is given by the derivative af
with respect to the flux [130,155]. It is appropeido incorporate the quadratic

term dependence for the charge [164] and hence dbeesponding
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memductance after scaling will bep? + B +y. It is observed that
Memductance can affect the conduction of electf{@B8] and this term can act

as the influencing magnetic flux on membrane paénf the selected neuron.

4.3.1.1 Time Series behaviour under external non periodic current

The time series of membrane potential of a neusostudied under
different external forcing current and parametdues. Different electric modes
are observed for different external currents. Ttieloparameters are chosen as
k=04,k;=1, k,=0.50¢ =0.1, =0.02,y =0.2. It is observed that the
electrical activity selects different discharge medinder suitable parameter
values. The plots are shown through Figure 4.1{@)+E 4.1(c). It is observed
that the quiescent states[165,166] become broadiemettie behaviour of the
membrane potential as the value of external cuiremeases. Also for higher

values of external current, the system settles downoscillation death[130]
after a short time [Figure 4.1(c)].
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Figure 4.1: Variation of action potential with time is plottddr I,,,=1.5,
4.5and 5mA respectively. It is clear from the figuhat for high values of
external current, the system changes from quiesstaiie to oscillation
suppression behaviour.
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The results of simulations are summarized in Tdblk

Table 4.1: Different types of dynamics of four-variable H-fReuron with
guadratic flux under external non periodic current

External non periodic current Dynamics

loxi=1.5 Quiescent state

Iy t=4.5 Quiescent state broadens
Io,t=5.5 Oscillation death

4.3.1.2 Behaviour under external periodic current

To study the influence of periodic external currentneuronal electrical
activities, periodic currert,; = A coswt is applied to the system and the
dynamics is analysed. From the plots it is cleat #s external periodic current
increases, the action potential shows enhancedapne states for the spiking
activities and for a higher value of current theinoa system exhibits tonic
oscillations in contrast to the suppression of vaets observed with the
nonperiodic external current described in the mewisection. The states can be
observed by choosing appropriate parameter valudsasl,k; = 0.9,
k,=05a=04,6=0.02,and y = 0.2.
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Figure 4.2: Influence of periodic current on membrane potdnis shown in
figure. Figures are plotted for (a) A=0670.02, (b) A=30w=0.02 and (c) A=5,
w=0.02 respectively. The behaviour of membrane patergets changed

through quiescent spiking states to tonic behavemirthe external periodic
current becomes high.

The results are summarized in Table 4.2.

Table 4.2: Dynamics of for-variable H-R neuron with quadecafiux under
external periodic current

External periodic current Dynamics

A =0.5,w =0.02 Quiescent state

A=1.5 ,0w=0.02 Quiescent state broadens
A=3,w =0.02 Tonic spiking
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4.3.1.3 Bifurcation diagram of Inter Spike interval versus external current

To study the electricebehaviour of neuronst is important to analys
pattern of spikesThe complex bifurcation structures in-R neuron mode
[151] mainly help to understand the mechani used by the neuro to encode
information and its rapid response to «wli. So bifurcation plot of Int¢ Spike

Interval (ISI) versus current is important in thespec

Bifurcation diagram of Inter pike Interval (ISI)versus current c
improved HR neuron model under the influence of quadimemristor flux is
as shown in Figure 4.Blere the pattern of spikes depends on intrinsipgny

of neuronsnature of input to neurons and on network of inteoas

200

180 |

160 %\ -1
140 : - \ -
120 | \’\ i

100 |- S—— i

80 |
60 |
40 |

20 |

1 1.5 2 2.5 3 3.5 4
External current les

Figure 4.3: Bifurcationdiagran of Inter Spike Interval (ISlyersus current fc
four variable HR neurorwith quadratic flux controlled memristor

On Comparing with the stu of bifurcation diagram ofubic flux base
improved H-R model [82, 157],it is observed that for improved-R neuron
model with quadratic fluxmemristor, bifurcation diagram olnter Spike
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Interval (ISI )versus external forcing current ione dense exhibiting the

possibility of higher number of periods and hentmore complexity.
4.3.1.4 Lyapunov Exponentsversus External current

The dynamics and hence the anisotropy due to tHectefof
electromagnetic radiation on neurons are obsetvedigh Lyapunov Exponent
plot (Figure 4.4. Here variation of Lyapunov Exponent versus exkeourrent

is plotted which establishes the chaotic naturiefsystem.

027

Lyapunov Exponent
. 5 .
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14l | | | | | |
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External current (I_ )

o

ext

Figure 4.4: Dynamics of Lyapunov Exponent versus parameteirfgroved
H-R neuron model with quadratic flux controlled nrestor.

4.4  Effect of noise on electromagnetic induction of neurons

Noise can affect the transmission of periodic dgnay nonlinear

systems. Studies show[167] that external noisecesucan influence neuronal
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systems and hence the important parameters likasity and correlation time

of noise can play remarkable role in transmissiosignals among the neurons.

Here noise term is added to the fourth variablegpfation (4.1). So the
fourth term changes =k x; — k,p +&(t). The parameter values are
selected as given in Section 4.2.The irregularityelectromagnetic radiation
is represented by Gaussian white noise §€tnil67]. Here (é(t))=0,
(E(®)E(t))= 2D,6(t — t') whereD, represents the noise intensity.

Xy =Xy —axi + bx3 — x5 + Ly — kp(@)x;

Xy =c—dx? —x,

%3 =1(s(x; —x0)) — x5

@O=kix1 — ko + &(t) (4.3)
4.4.1 Influence of Noise under external periodic and non periodic currents

Noise term is introduced as given in equation (ke¥ping all the other
parameters the same. For non periodic current,vér&tion of membrane
potential with time exhibits the same dynamics la&t tof noiseless system
[Figure 4.1(a)-Figure 4.1(b)]. But the magnitudeeaternal current needed to
achieve suppression of oscillation gets reducedpemed to that of the system
without noise [Figure 4.1(c)] and also it occursatearlier time. The Figure 4.5
illustrates the dynamics.
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External current Iex o 4.2mA ,D=0.1
25
[

Time
Figure 4.5: The variation of action potential under non peigocurrent and
noise. It is observed that whég, = 4.2 mA and for noise intensit,=0.1
suppression of oscillation takes place. The sanmaeur persists for higher
values of noise.

[

Membrane potential (mV)

As the current is changed to the periodic one afoplitude A=1.6 the
oscillations are resulted in Figure 4.6. Furthertiee amplitude and frequency
A=3 and w=0.02 respectively, the addition of noise leadstaaic type
behaviour similar to Figure 4.2c instead of quiesctates exhibited in Figure
4.2(a). So it is important that in contrast to thehaviour of the system in
noiseless background the effect of noise in thesgree of periodic current
inhibits the quiescent behaviour for low valuesofplitude of external current.
The system exhibits the tonic type oscillation he presence of noise as time
progresses. But the presence of noise did not gdeetime series plot for the
values A=0.50w=0.02 and A=5=0.02 Figure 4. 2(a) and Figure 4. 2 (c).

126



I nfluence of Memristor and Noise on H-R neurons

A=1.6 ,w=0.02,D=0.9
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Figure 4.6: The variation of action potential under the inflaenperiodic
current and noise. It is observed that when A=4#).02 and noise intensity
Dy=0.9, the quiescent state later on changes tdatsmils

45. Energy for improved H-R neuron model under the influence of

guadratic memristor flux.

Hamilton energy can be calculated on chaotic neayatems with
different types of attractors[168]. The energy mlaton helps to control
chaos in various systems. The negative feedbadné@rgy can suppress the
phase space and oscillating behaviours and itrim ¢an control the chaotic
and periodic oscillators. So the calculation andlygsis of Hamilton energy

in neuronal chaotic and hyper chaotic systemseasyant in this context.

Based on the Helmholtz theorem, the Hamilton enégyalculated. It
helps to discern the energy dependence on the medetion of the electric
activities of neuron. Here the statistical Hamilemergy[168] is calculated and
it can be used to find out the relation among actotential, transition of
electric activities of neurons in terms of exterfrating and energy. According

to Helmholtz theorem, the dynamical equations fearon can be treated as
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velocity vector field [169] and this can includemswf two vector fields. These
vector fields represent the dissipative and corame fields. So the system can

be represented as sum of two sub-vector fieldb@asrs below

fr) =fa(r) +fe(r) (4.4)
So the dynamical system given by equation (4.1)bsarepresented written as

Xy
X
X3
@

= [J(x1, X2, X3, @)+R (X1, X2, X3, ) |VH

:fc(xlllex& (p) +fd(x1)x2)x3) (p) (45)

whergxy, x5, x5, @ ) andR (x4, x,, x3, @) represent skew symmetric matrix

which satisfies the Jacobi’s closure condition.
Sof.(x1,%x3,%x3) = J(xq,%3,%3,9)VH

xz_x3+1ext_(p

_ c —dx? 4.6)
r(s(x1 — xo)) )
koxq
and
—ax3 + bx? —kp(@)x, + @

_ —X3

fd(xlfo'x3l (p) - —TX3 (47)
—k3¢

The general hamilton energy function H is defingdhe criterion

VHch(xll X2, X3, 9)=0
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dH .
VHde(x11x21x3' (p) = E: H (48)

So energy can be obtained by substituting equddd®) and (4.7) in

equation (4.8) and can be written as

oH oH oH oH
(X2 = X3 + Lot — <P)a—xl+(c - dxf)a—xz-FTS(M _xO)E-I_ koxy5.=0
Solution of above equation can be written as

H= %dxf —2¢x, +15(xy — x0)% + (3 — X3 + Lyt — @)% + kyx? (4.9)

Hence time variation of Hamilton energy is given by

H =2dx?3; — 2cx; + 2rs(xq — x0)%; + 2(x3 — X3 + Loy — @) (%y — X3 —

@)+2k %1%, (4.10)

On substituting the values df, x,, x;andp in the above equation and

rearranging the terms we get derivative of enegyy a

H= 2dx?(x, — ax3 + bx? — x3 + Ioyr — kip(@)x1) — 2¢(x, — ax3 + bx? —
X3 + loxe — k1p(9)x1) + 215 (xy — %) (xz — axi + bxf — X3 + loye —
k1p(@)x1) + 200, — X3 + Loye — @) (€ — dxy > — x5 — 75 (g — Xo)+7%3 —

koxy + ks (4.11)

Again on rearranging the terms in equation(4.11gete

H=2dx? — 2c + 2rs(x; + 1.6) + 2k, x;(—ax3 + bx? — kyp(@)x, + @) +

2(x — x3 + Iy — @) (—=x3) — 2(x2 — X3 + Loye — @) + (—=7x3) —
2(xy — x3 4 Loye — @) (—ksp) = VHT f, (4.12)
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The energy function in neuron shows distinct depend on external
forcing current,,, and the action potential; and thus discharge states are
obtained. So the Hamilton energy gives the fluatmaiof energy function
associated with external forcing. This explains wimg neuron can give
appropriate response to external forcing which Beggontinuous energy for

neurons.

Numerical analysis of system is also done (Figur@. & he variation of
Hamilton energy with external forcing current showscontinuity in
behaviours [170].
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(b)

Hamilton energy consumption
N\
N\
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Current

Figure 4.7: (a) External current variation with timg)Variation of average of
Hamilton energy with respect to current. Here loalue of current gives
guiescent state and high value of current leadisrtic type transitions

The plot for the variation of average value of Hiéom energy with
current shows a plateau for low values of curreictv explains the presence of
the quiescent state[169,170] in Figure 4.2a. Foremsed current its behaviour
get changed through its irregularity and for vallegh values of external
current high frequency tonic type transitions doéamed. To be specific, when
amplitude of external current increases beyond 5itide, Hamilton energy
increases linearly and hence the appearance af $piking described in section
4.2.1 is justified.
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4.6.  Synchronization under electromagnetic induction and noise
4.6.1 Quadratic flux controlled memristor for coupled neurons

It is possible to control the activity of neuronsrbagnetic forces which
in turn control the flow of ions into specificalliargeted cells[171].Here
coupling is introduced to modified four variable RHneuron models where

guadratic flux controlled memristor based electrgnedic radiation is present.
Xy = xp — axi + bxj — x3 + Iy — kp(@1)x; + g (x4 — x1)

X, = c—dx? —x,

X3 = r(s(x1 — xo)) — X3

G=kixy — ka1 +&(2)

X4 = X5 — ax3 + bx§ — X + loxe — kp(02)x4 + g(x1 — X4)

Xs = ¢ —dx? — xs

Xe= r(s(xs — xo)) — Xs

G=k1x4 — ko +£(0) (4.13)

Here x4, x,, xgand I,,; represent the membrane potential, slow current
associated with the recovery variable, adaptatiorreat term and external
forcing current respectively for the first neuroBimilarly x4, x5, and x¢
represent the corresponding variables for the skcwuron. The parameter
values are selected as a=1, b=3, c=1, d=5, r=08386x,=-1.6.

The memristance of quadratic flux controlled metoriss represented

by p(@)= ap? + Be + y. Since this term is associated with the memorg it i
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used for estimating the effect of feedback regofatbn membrane potential
when corresponding magnetic flux is changed. Then te represents the
coupling intensity between the neurons. Here ttegyularity of electromagnetic
radiation is represented by Gaussian white noise §&t). It is found that the
synchronization degree depends on the couplingsitieand the intensity of

external electromagnetic radiation.

Time series plots of membrane potentials dnd x,) for coupled H-R
neurons (Figure 4.8) confirm the synchronizatiottga. Here the parameter
values ark=0.4, k,=0.8, k,=0.5,D0,=0.6,0=0.02,4=0.1, y=0.1, g=1.
Depending upon the parameter values and exterrahgcurrentl,,;, various
synchronization phenomena are observed. As theevafuexternal current
increases the dynamical behaviours such as perioteotic and tonic type

synchronizations are observed
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Periodic synchronization: External current |m= 2.5mA

2 T T T T T
15 =
—~
<
X 1 -
-
X
<
k%) 05 i
BN
cZ
2 £ i
o}
Q
[0}
c 05 i
©
—
Qo
£ A
[0}
=
45 i
2 | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Time
External current Iext =3.5mA
25 i i T
P i
T
* 15 =
=
X
fo2 1 =
0
8
‘q&; %‘o.s 8
o -
o o ffh -
(0]
=
o 05
5 .
€
(0] . |
s g
15 =
2 | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

134



I nfluence of Memristor and Noise on H-R neurons

(d)

Tonic synchronization: External current | ot 45mA
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Figure 4.8: Time series for membrane potentials for the twopted neurons

are plotted for different external forcing currekar I,,,=1.5, 2.5, 3.5, and 4.5
mMA the synchronization behaviour of the system @firons changes through
periodic, chaotic and finally through tonic typenskironization.

In a similar way by keeping the external currexédl ad,,; =3.5 mA
and changing the coupling parameter and noise sitferas (a)g=0, D=0,
(b)g=1, D=0 and (c) g=1 and D=0.9 various patteresobserved. When there
is no influence of coupling (g=0) and with no noisgensity (D=0), the two
different neurons behave independently as it mugFigure 4.9(a)]. The
behaviour is retained with the case where the naisensity is raised to
maximum [same behaviour as that of Figure 4.9@}.as the two neurons are
coupled, for high value of coupling strength andabsence of noise intensity,
synchronization of the system takes place. [Figu@b)]. Finally quiescent
state and subsequent suppression of oscillatioactsffare observed for

appropriate high values of noise intensity and daggstrength [Figure 4.9(c)].

135



Chapter 4

(@)

External current |__=3.5 mA ,g=0 ,D=0

ext

Membrane poten’(ials(x1 Xy )

15

2 ] ] 1 1 | |

0 100 200 300 400 500 600
Time
External current Im= 3.5mA, g=1,D=0

25 T T T

2
15

(mV)

Membrane potentials (x1 ,x4)

|
-0.5 i
-1
-15
2 I | | | I I
0 100 200 300 400 500 600
Time

136



I nfluence of Memristor and Noise on H-R neurons
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Figure 4.9: Time series for membrane potentials are ploteediked external
forcing current. Fof,,,=3.5 mA the synchronization behaviour of the systém
neurons (Figure 9b) is achieved with control parn@mealues g=1, D=0 and the
system attains oscillation death state (Figure.f@chigher coupling (g=1 and
D=0.9) in the presence of high noise.

4.6.1.1 Transverse Lyapunov plot for quadratic flux based memristor

The stability of synchronization can be quantifiegd master stability
approach [172]. The synchronization is stable & mhaster stability function is

negative at each of transverse eigenvalues (FigaM®.

137



Chapter 4

0.04 - '

0.03 b

0.02

0.01

TLE
o
T
I

-0.01

-0.02
-0.03 N

-0.04 - N

0055 ! ! ! | | | | | | i
0 0.2 04 0.6 0.8 1 12 14 16 18 2

g (Coupling parameter)
Figure4.10: The TLE of coupled improved H-R neuron model wjthadratic

flux induction

The largest TLE crosses zero and becomes negatidecating

synchronized state and its stability.
4.7 Influence of exponential flux controlled memristor on coupled neurons

The work is extended to examine neuron dynamic®utite influence
of exponential flux controlled memristor where theurons are allowed to

interact with each other.

Xy =X — axi + bxg — X3 + Loy — kp(@)x1 + g (s — x1)
Xy =c—dx? —x,

%3 =71(s(x; —x0)) — x3

G=kixy — ka1 +§(2)
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Xq = X5 — ax3 + bxZ — xg + Loye — kp(@3)xs + g(x1 — x4)

Xs = ¢ —dxi — xsg

%6=1(s(xs — x0)) — X5

P=kix, — ko, +E(t) (4.14)

The parameter values are selected as a=1, b=3,de5],r=0.006, s=4,
kl = 0.9, k2205

The exponential flux controlled memristor[173] épresented as

q(p) = k3(a;"? - 1) (4.15)

Where a > landk;b; > 0. The Memductance of the function is

p(p) = albl(pk3b1lna1. Herea,= e,b; = 5010g(0.5) and k;=10.

As the values of external current changes, the spmization pattern
shows various patterns as depicted in Figure 4Rigufe 4.11(a)-Figure
4.11(c)]. When the magnitude of external forcingrrent increases, the
synchronization pattern shows tonic oscillationshiolw finally leads to

oscillation death state with appropriate valuexdémal forcing current.
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Figure 4.11: Time series for membrane potentials are plotted different
external forcing currentl,,;=2.5mA,l,,;=3.5mA and [,,;=4.5mA. As
magnitude of external forcing current increaseg, signchronization pattern
changes to oscillation death state.

On comparing with the dynamics corresponding to dgaigc flux
controlled memristor, it is interesting to find tHar same coupling strength and
for same noise intensity (= 1 and D,=0.6), instead of the tonic behaviour, the
system sets into oscillation death state for highagnitude of external forcing

current in the case of exponential flux controkgdtem.

Further by keeping the external current fixed,gt =3.5 and changing
the coupling parameter and noise intensity term@)gs=0.01, D=0.9(b) g=0.5,
D=1 and (c) g=1, D=0.3 various patterns are obthitieis observed that for
low values of coupling strength and noise intengiity system exhibits anti

phase state [Figure 4.12(a)]. The behaviour isgovesl as noise intensity is
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stepped up [the pattern is same as that of Figur&&@)]. As g is increased to
0.5 keeping the noise intensity as 1, the behawdunembrane potential gets
changed to chaotic synchronized state [Figure B)12But the decrease in
intensity of noise to D=0.3, at high coupling styén causes the time series
dynamics to change into that of periodic one [Fegdir12(c)].
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Figure 4.12: Time series for membrane potentials are plotted different
coupling strength and noise intensity. Various ggat such as (a) antiphase
(g=0.01, D=0.9), (b) chaotic (g=0.5, D=1) and (®ripdic (g=1, D=0.3)
behavior are observed for appropriate values ofenamtensity and coupling
strength.

Depending upon the low and high values of noise andpling
parameters anti phase state of the system givestavayaotic and then to
periodic type synchronization patterns.

On comparing with the synchronized and oscillati@ath states found
in coupled neurons with quadratic flux based metmwjsthe system with
exponential flux based memristor exhibits chaotind aperiodic type
synchronization state.
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4.8. Discussions and concluding remarks

The essence of brain function consists in how tifieriation is being
processed, transferred and stored. The Neuro BleBtynamic model
(NED)[174] is an emerging field which describes th&insic computational

processes by the dynamics and interaction of cearge

Various studies [130,152,155,165] had been caoigdn the effect of
electromagnetic induction on H-R neuron under thituénce of cubic flux
controlled memristor. In the present work influenck quadratic flux and
exponential flux based inductions in four-variablldR neuron model is studied.
In the first part we analysed the different modeslectrical activities in single
neuron under quadratic memristive term. The systehaviour is studied under
the influence of external periodic and non periatlicrent. It is observed that
for nonperiodic current, as the value of externatent increases the quiescent
states[166]become broadened and also for higheesaif external current, the
system settles down to oscillation death state. él@wfor the periodic current
the action potential shows enhanced quiescentsstatethe spiking activities
and for the higher current the neuron exhibitsaascillations in contrast to the
suppression of activities observed in non periatiise. So in quadratic flux
based mode transition, when compared to cubic rikxnristor [130,152,157]
the suppression of oscillations is an additionatiuee.

The influence of control parameter like noise om tieurons is also
subjected to study. It is found that when noiseadsled to the system, the
oscillation death is achieved for smaller magnitatiexternal current. Also the
presence of noise leads to the inhibition of queesactivity under periodic
current. The Lyapunov Exponents are plotted whimhfiom irregularity in the

neuron dynamics.
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Energy is calculated in terms of Hamilton energyutmerstand the
neuron response to external forcing current andragtotential. It is observed
that the plot for Hamilton energy versus currenbveh discontinuity in
behaviour. There is a plateau for low values ofrenir which explains the
presence of the quiescent states and as currergases tonic behaviour is
resulted in. Bifurcation of Inter Spike IntervaB() versus current is also plotted
and it shows denser pattern as compared with thatubic flux based

electromagnetic induction.

The synchrozation of coupled neurons also is teadmf study. Under
the influence of quadratic flux and noise term #ystem changes through
periodic, chaotic and tonic type synchronizationhescurrent is increased. The
variation of noise intensity and coupling strentgthds to oscillation death of
these coupled neurons under constant current. Veeses Lyapunov Exponent
plot gives a picture of the stability of the couplsystem. The effect of
exponential flux controlled memristor based elaotagnetic induction on
neurons when coupledis also examined. With expaalefiux controlled
memristor the activity changes to tonic type syoaoimation with increase in
forcing current. Here the synchronization patterspldys oscillation death,

antiphase, periodic and chaotic transitions.

The work gives a pathway to understand electrontagfiex influence
on the overall activity of neurons. The activity méurons is examined with
guadratic and exponential flux based memristor. iBrgroduces an
electromagnetic field with specific characteristiééso Electromagnetic waves
are produced due to artificial nano-synapses. Thmmstor as magnetic flux

can also influence neuromorphic quantum computation

The effect of field coupling under the influence lafvy noise on the

electromagnetic properties of neuron with quadrfitig is the future focus of
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study. In the presence of field coupling and nomu3&n type noise likeéky
noise studies may exhibit improved electrical agtiof neuronal network with

information exchange in the absence of the synapse.
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Chapter 5

Electromagnetic induction on neuronsthrough field
coupling and Memristor

51 I ntroduction

Synapse coupling is considered as the most imporaitige to
exchange signals between neurons. It is possibd@atyse the synchronization
and pattern selection in neural network under chaimor electric synapse
coupling. The possibilities of linear and nonlineynapse couplings on H-R
neuron model[132] are already discussed in ch&ptdr helps to characterize

neuronal interactions among the neuron models.

In the present chapter, the effect of field couplom the electromagnetic
induction of neurons is examined. An improved H-€umn model with cubic
flux controlled memristor is selected to analyze #inetics of neuron. Each
neuron is considered as a charged body. It cando¢ratled by the field
triggered by the other neurons. It is observed thiatler field coupling
excitability of neurons can be changed. Field cmgplcan benefit signal

exchange between neurons even if synapse is absent.

Neuron is the basic unit in neuronal network ascdelectrical activities
show distinct nonlinear properties. Various biot@gineuron models and their
modified versions can be used for recognizing amdetstanding the electrical
activities in neurons[67, 68, 193, 194]. Exterraking can induce transition in
electrical activities namely quiescent state tdisig, bursting and even chaotic

states in neurons [194].

The normal function of neural networks always dejseon a delicate

balance between excitatory and inhibitory synaptiputs[194-196]. It is

149



Chapter 5

thought that excitatory synaptic inputs are helptl trigger the electrical
activities of neurons, while inhibitory synaptigurts can calm down the firing
in electrical activities. Many evidences confirmigt inhibitory synapse can
enhance neural firing pattern or enhance synchatioiz degree of coupled
neurons and of neuronal network[197-199]. It isoatsbserved that some
intermediary neurons have autapse connection[20djere the synapse
connects to neuron or soma via a closed loop. Thdufation of autapse
driving can cause a time-delayed feedback on theabrene potential. It can
enhance the self-adaption of neuron to externatutiand can regulate the
collective behaviours of neuronal network. Alsoeetf of autapse with time

delay can be used to describe the effect of memanguron[200,201].

For the neuron and biological cell, the electriaativities also can be
changed due to the electromagnetic induction. Hees motion of charged
particle can be controlled by electromagnetic fixhdl the spatial distribution of
charge particles become complex when these chagilps are exposed to
external electromagnetic field. The electromagnetdiation on neuronal
electrical activity can affect energy metabolismengmic responses,
neurotransmitter balance, cognitive function andiows brain diseases
[194,202]. Lisi et al. [203] investigated the effet electromagnetic radiations
at a frequency of 50 Hz on the development of adlab granule neurons
(CGN). Masuda et al. [204] presented experimenrgaification and discussion
about effects of 915 MHz electromagnetic field atidin in TEM cell on the

blood—brain barrier and neurons in the rat brain.

It is observed that multiple modes of electricalivaites[205] can be
induced by electromagnetic radiation. These resalts consistent with
biological experiments. Recent studies based onew mardiac tissue

model[206] explained the potential mechanism foarhelisease induced by
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electromagnetic radiation. The synchronization beha of electrical activities
of neurons can be examined when neurons are exptisedoise like

electromagnetic radiation [207, 208].

As discussed inchapter 3, linear coupling like indirect synaptic
coupling and cubic feedback coupling etc. exhibiggoperties like
synchronization, amplitude death and anti synclzation. Different memristor
based nonlinear couplings[209] exhibit tonic spikibursting, and oscillation
death and near death spike etc. and these richdgalabehaviours have much

importance in the study of brain cells.

Synaptic coupling and field coupling have distirfeatures. During
chemical synaptic transmission, neurotransmittery nratiate an electrical
response. There is no intercellular continuity,stmo direct flow of current
from presynaptic to postsynaptic cell. Here actipotential triggers the
presynaptic neuron to release neurotransmittens.akaelectrical synapse gap
junctions between pre synaptic and postsynaptic on@nes allow current to
flow passively through intercellular channels[21This current flow changes
postsynaptic membrane potential and causes thationt of postsynaptic action

potentials.

Recent researches showed that the field coupliig[B&tween neurons
can also give a new insight to understand the cile behaviours in neuronal
networks. Here coupling of adjacent nerve fibersagsed by the exchange of
ions between the cells. Here extracellular fielddfeacks on to the electrical
potential across neuronal coupling. Electrical eatidn of nerve impulse
occurs without mediation of neurotransmitter andnigependent of synapse.
Spiking of an active neuron is accompanied by ilow facross the membrane.
This may cause an alteration of the electric fadlthe extracellular space which

affect the excitability of nearby inactive neuroife ephatic or field coupling
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depends on the distance between two neurons. Ay Sifidhe mouse barrel
cortex has reported that during strongly synchmeahigpiking activity (epileptic
discharges or strong evoked responses), spikinigl dmueffectively induced by
localized extracellular currents[211].

This chapter examines the effect of field couplingH-R neurons.
Studies on biological Hodgkin—Huxley neuron modekrev helpful to
understand the occurrence mechanism of neuronalersygs induced by
electromagnetic radiation[209]. Researches basedaotiective responses in
electrical activities of neurons under field coungliwere also reported[210].
The contribution of field coupling from each neurcan be analysed by
introducing appropriate weight dependent on thaetiposdistance between two
neurons[209]. Such studies have confirmed thatstmehronization degree is
much dependent on the coupling intensity. It issgme to modulate the
synchronization or pattern selection of networkremted with gap junction by
field coupling [194,205,206].

In the proceeding sections, the effect of electgmesic induction on
neurons through field coupling and memristor is lgsed. Here the four
variable modified Hindmarsh -Rose neuron model[68]2is selected. It is
observed that time-varying intercellular and extiagar ion concentration can
induce electromagnetic induction and this effeat t® described by using
magnetic flux according to the law of electromagnetduction. The induced
current from electromagnetic induction can moduli&iee membrane potential
via feedback by using cubic flux controlled menorst Memductance is
dependent on the external stimuli and thus memary lge illustrated[108]
Field coupling is also introduced to understand ¢b#ective behaviour and
synchronization problems[194]. Different externainsili are applied to study
the effect of field superposition on neuronal dagfes. It is possible to analyse
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the spatiotemporal evolution of membrane potentfals different external

stimulus current and the corresponding dynamics$oaned to be changed.

For isolated neurons, as the external forcing cdriaecreases, the
system shows diversity in behaviour under low cmgpl Oscillation
suppression behaviour for low current is changed tonic spiking on increase
of current. For coupled system the increase ofirtensity of external stimuli
leads to enhancement of the synchronization of ameurSimilarly for high
coupling strength, as intensity of external stimsalimproved, suppression of

oscillations is resulted in.

For the neuron networks the neuron oscillators simmeherent as well
as synchronization behaviour for various couplitrgreggths. This is examined
for the collective behaviour of 300 H-R neurons.

Stability of synchronization is examined througlafisverse Lyapunov
Plot. The controller for the system is developed]|l1and the activation—
inactivation dynamics of fast ion channel for weakd strong coupling is
analyzed. This is done by varying the value of ¢tiogparameter.

In the improved H-R neuronal system, each neurom cet
electromagnetic field due to the fluctuation of iconcentration and exchange
of ion current through the channels embedded incorhembrane. Here each
neuron is exposed to the integrated electromagfieta contributed by other
neurons according to superposition principle ofdfieSimulations confirmed
that under field coupling the electrical activiti@s neurons show certain
diversity in amplitude and the rhythm and hence camry more important

information because synchronization can be assatigith memory[171].
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5.2 Model and scheme

The dynamical equations for neuron network can désciibed by field

coupling as follows

dxl-

P f(xi,p)

dg;

= kx; + g 07 — 90 (5.1)

Where the subscriptused in equation (5.1) describ&srieuron in the
network without synapse connection[lgg};i @; — @, represents the field and
magnetic contribution of other neurons to tAeneuron. Here;andy;denotes
the membrane potential and magnetic flux for nesiroespectively. The
coupling intensity is represented pgyandp is a parameter which characterizes
H-R the neuronk is the induction coefficient associated with thedimen and f

(x, p) represents the local kinetics of neuron model.

Schematic diagram of ephatic or field coupling [[1l94hown below.

Figure 5.1: Spiking of an active neuron is accompanied byfiow across the
membrane. This results in alteration of the electield at the extracellular
space and in change the excitability of nearbytimameurons (adapted from
[194,206]).
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The Hindmarsh-Rose(H-R) neuron model[68] mainlyduse describe
the nonlinear dynamic characteristics of neuroim& dynamical kinetics can be
understand by the ordinary differential equatid@BE). It is composed of three
variables. Here memristor is used as coupling te@tween membrane potential
and magnetic flux. Hence the induction field anticecpotential can be bridged

in physical view.

In this work, an improved H-R neuron model is se&ldcwhich
incorporate the magnetic flux as fourth variablas& on an improved neuron
model, the effect of field coupling on electromagmenduction is analysed and
the modulation of magnetic flux on membrane potrdan be understand by
using cubic flux controlled memristor couplifgach neuron regarded as a non
uniform charged body and the corresponding distidnuof the charged ions
are not in a uniform way. The contribution to theld distribution from each
neuron could be different in biological and nervaystems. So appropriate

weight can be considered in the neuronal netwodR][.2

A chain distribution for Hindmarsh—Rose neuron witdd coupling is

given by

X1p = Xg; — axfi + bngi — X3; + loxe — kp(@i)xy;

. 2

Xoi = € — dXf; — Xy

X3; = T(S(xu‘ - xo)) — X3j

@ =kixy; + g0 — @1) (5.2)

The membrane potential, slow current associatel mgitovery variable
and adaption current are representedxby, and xsrespectively, where the

memductancep(¢;) is cubic flux controlled memristor term. The paraene
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values are selected as a=1, b=3, c=1, d=5, r=0.668,x,= -1.6. Here
kx,; denotes the changes in magnetic flux induced by lon@ne potential.
Hence the interaction between membrane potentidl magnetic flux are
represented by the variables k andRelation between memristor magnetic
flux, membrane potential and current is shown #es.

. _dq(e) _ dq(@)de _ _
L=~ de @t p(@)V =kp(p)x, (5.3)

53 Simulation Results

The spatiotemporal evolution of membrane poteniglsalculated for
dynamical analysis for different node positions wigxternal stimulus current
is changed. In order to illustrate the effect @&idi superposition on neuronal
discharges, different external stimij are applied. The excitability of neuron
can be changed in response to the external forcumgent. This is well
understood through numerical studies. Collectivapoases in electrical
activities of H-R neurons under field coupling astdbility of synchronization
through Transverse Lyapunov Exponent are also sedly

5.3.1 Modes of electrical activity of isolated H-R neuron under field

coupling

Sampled time series analysis are done using Matlatborm for the
isolated neuron [194] system by changing controapeters. As the intensity
of external current,,; increases the dynamics of single H-R neuron model
under field coupling shows distinct behaviours. & value of external current
I.»+ =0.5 mA the neuron system shows the suppressi@ttofity. But as the
current changes to 1.5 mA its activity gets changedsudden spiking
behaviour. For higher values of external currerghibws a tonic or continuous

spiking activity. Figure 5.2 shows the differenindynics of the system. Larger
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external stimuli are much helpful to excite neurddyg increasing the intensity
of external stimuli the suppression of oscillatans modified to spiking states.
Hence it is shown that the field coupling[202] ajonith the magnetic flux of

memristor can control the mode transitions.
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Figure 5.2: Time series plot of membrane potentials for couplstength
g=0.5(a) Oscillation suppression of neuron ungdgr=0.5. (b) spiking activity
I.,+=1.5 (c) tonic spiking fof,,;=3.5

5.3.2. Synchronization behaviour of neuronsunder field coupling

Here the two improved H-R neurons are selectedi@ndynamics is
analysed for coupled neurons under field couplifige corresponding mode
transitions of electrical activities under electagnetic induction due to field
coupling are analysed[194,205,209]. For low couplstrength (g=0.3), the
system shows distinct dynamics such as suppresgi@ctivity, spiking and
death of neuron, antiphase state and chimera statainder various external

forcing currents (Figure 5.3).
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Figure 5.3: The time series analysis of coupled neuron farpting strength
g=0.6.(a) Two neurons are in oscillation deathesfar/,,;=0.5.(b) For the
currentl,,,=1.5, the spiking of one neuron and death of otimer takes place.
(c) Antiphase synchronization/desynchronization eolsd for 1,,,=2.5(d)

chimera states occursigt;=3.5
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Further the study is extended with high value afptmg strength (g=1).
The system dynamics exhibits quiescent modes, ibgrsbscillation death as
the values of external current increases. Thetresguite different comparared
to that of low coupling intensity. For low couplisgrength the oscillation death
occurs under low values of external stimulatingreatr. But as coupling
strength increases suppression of oscillation ralgs place even under high
stimulating current. Hence we can reign the dynab@baviours under field

coupling by selecting appropriate control paransekegure 5.4.
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The field interaction between each neuron can ohalgcharge period
of a neuron. The field coupling can drive neuramgjive appropriate response

in time. Here the synchronization degree varief witernal forcing current.

5.4. Collective responses in electrical activities of H-R neurons under

field coupling.

The influence of field coupling on the collectiveraviours in neuronal
network connected by electric synapse[200,210,béiWeen adjacent neurons

is also analysed.

Transition to synchronized state with increase onpding strength is
observed for 300 H-R neurons. In Figure %.8Benotes the oscillator (neuron)
number and¢; denotes the membrane potentialitbf neuron. Figurersaj and
(b) represents the dynamics of 300 H-R neurong fof . 1 (desynchrony) and

1.0 (complete synchrony) respectively.
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Figure 5.5: Transition from desynchronized state(incohereiat) complete
synchrony with increase in coupling strength, whiedenotes the oscillator
number andx; denotes the membrane potentialiah neuron. &) and )
represents the dynamics of 300 H-R neurongfer0. 1 (desynchrony) and 1.0
(complete synchrony) respectively.

5.5. Analysiswith control inputs.

The control law serves as a bridge to estimatautiti@own parameters
of the model[210,211,171]. The analysis based amtroblaw can indicate
disease condition in the case of biological neurdinsan be used as a bridge
network in between the abnormal and normal netwbhe method of deriving
control laws for synchronization can be used in yneomplex networks, such
as electronic circuits, computer networks and mayded as a potential method
for adjusting neuronal rhythm to cure mental digsosdin future. In the
following section the synchronization condition fttre model including the
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control inputs are developed. Control inputs canabalysed by Lyapunov

function method. The dynamics of system with cdntrput can be written as
X1 = Xpp — ax{; + bxg; — X3 + loxe — kp(xa)xq+u(i, xq)

Xpi = ¢ — dxf; — xpp+ u(i, Xz)

X3 = 7”(5(9511' - xo)) — xg;+ u(l, x3;)

Xar = kyxy; + G0N Xaj — x40) + u(i, x4y) (5.4)
The synchronization errors are defined as

e(l, x1;) = X1 — X1, €6, X25) = Xopi — Xg, €(f,X3;) = X3p; — X34,

e(l, X4;) = Xani — Xai (5.5)
The error dynamics are taken the form

e(i, x1)= e(, x3;) — a(x1p; — x1:)* + b(Xoni — X%2:)% — (xzn; — X3;) —

kpe(i,xq;) —u(i, xq;)
é(i, x21) =—d (x1n; — x13)* — e, x2)) — u(i, xz;)
€(i, x3)=1s (X1n; — X11) — €(i, x3;) — u(i, x3;)
(i, X41)=k1(X1n; — X11) — g €(i, x43) — u(i, x4;) (5.6)
Considering the Lyapunov function using differeneeiable we get,

1 @n— . , , ,
V= 52?:113(1; xli)z +e(i, le-)z +e(i, x3i)2 +e(i, x4i)2 (5.7)
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V=e(i, xp0)e(l, X1:)-a(X1p; — X19)?e(, X13) + b(Xop; — X2:)%e (i, x17) —
(xani — x3)e(d, x1) — kpe(i, x1;)? — u(i, %) e(, xq;) — d(Xyp —
x1)%e (i, xz)—e (i, x21)% — u(i, x3;) e(i, xp;) + 15 (X1n; — x1)€(l, X3;) —
e(i, x31)? — u(i, x3:)e(l, x3:) +ky (X1 — x1)e(l, x4:) — g (i, x49)% —

u(i, xq;) e(i, x4;) Herd =1..ceoooeeeven— 1 (5.8)

The controllers are chosen to ensure that the tdeevative of
Lyapunov function is negative definite. The erroosiverge to zero as— oo,

this leads to asymptotically stable synchronizatianifold.

So controllers are chosen as

u(i,xq;) = e(i, x3;)a(xX1pn; — x1i)2 + b(X2ni — xzi)3 — (X3ni — X31)

— kpe(i, x1;)
u(i, Xp5)=—d (X1n; — X11)* + e (i, x3;)

u(i, x3;) = 15 (Xn; — x1;) — €(i, x3;)

u(i, x4;) = kq(ni — x1;) — €(l, X41) (5.9)
Then
V=—g X5 e(i, x4)? (5.10)

Hence H-R neuron network with field coupling analysvith controller

shows that Lyapunov function derivative is negative
5.6. Stability of Synchronization

The stability of synchronization of the selecteddelocan be quantified
using the master stability approach developed lmpiRReand Carroll [211] . The
master stability function allows to establish wlegthany linear coupling
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arrangement will produce stable synchronous dyrmanticalso helps to reveal
the desynchronization bifurcation mode which oagben the coupling scheme
or strength changes. The synchronization is stablhe master stability
function is negative for each of the transverseemiglues. The analytical
expressions for estimating the synchronizationstmoél for diffusively coupled
continuous and discrete time chaotic systems hasen breported earlier
[211,212].

For the stability of synchronization, complete #&abynchronization
occurs,when the difference between neural osadilledordinatesy; = x,, — x;,
Vi =y, —¥; andz; = z, — z; vanish in the limit of & co and there exists a
synchronous solutiomy (t)=71,(t)=............. =1, (t).Wheren; (t)=(x;, yi,zi)-
Hence the stability of equations for perturbatitmasmisverse to synchronization

corresponding to given equation can be calculated.

The activation—inactivation dynamics of fast iorashel for coupling
has been analyzed by varying the value of couingngth from 0 to 5. The
minimal condition for the stability of synchronizestate[211,171] is the
negativeness of the Transverse Lyapunov ExponditkEs) associated with

equation (5.2).
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Figure 5.6: The TLEs of coupled HR neural network. (a) Conglstrength is
plotted alongx axis and TLE along axis. The largest (blue color) TLEL 1)
become positive under coupling strength 1.1<g<2.7.

Variation of two largest TLESAML 1 andALl 2) with increase irg are
shown in Figure 5.6. As the coupling strength isréased, the largest TLE
(AL 1) increases initially, reaches a peak, and theamedses. The largest TLE
crosses zero and become negative indicating aitimn&rom desynchronized

state to complete synchrony.
5.7  Summary

In the complex physical and biological conditiosr (example, noise
driving and electromagnetic radiation), it is vedjfficult to achieve the
complete synchronization between neurons [194,12624.3]. But the phase
synchronization or rhythms are available in suckesaln the work presented
here it is observed that magnetic coupling is afectffe way to realize

synchronization. The effect of field coupling o tllectromagnetic induction is
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examined. The corresponding modes of electricavides with cubic flux
controlled memristor are examined by finding thituence of the magnetic flux
on membrane potential. For isolated and coupledomsy different mode
transitions in electrical activities can be anatiybg increasing the intensity of
field coupling. Under low coupling strengt has tleternal forcing current
increases the system shows diversity in behavigarious dynamics such as
oscillation death, tonic spiking, desynchronizatimmd chimera state etc. are
resulted in. As coupling strength increases, dyoarof spiking, bursting and
oscillation suppressions etc. are resulted in. Hemder high coupling strength
oscillation suppression can be observed for higmuating current. It is
observed that for network of 300 H-R neurons, teeron oscillators show
incoherent as well as synchronization behaviouabity of system is

confirmed by negativeness of Transverse LyapungoBi&nt plot.

The mode in electrical activities can be controlgdield coupling. The
excitability of neuron can varies with the exterf@icing current, and larger
external stimuli are much helpful to excite neuromkis is well understood
through the numerical studies. So present studiess gdeas to understand the

signal encoding and exchange when synapse couplatgsent.
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Chapter 6

Dynamics of Josephson Junction model with Memristoand H-R neuron

6.1 Introduction

In Josephson Junction the quantum-mechanical efesponsible to
produce a non-ohmic current between two supercdotiiseparated by an
insulator. Complex chaotic behaviours can be sitedlan the Josephson
Junction (JJ) circuits when it is coupled with otledectric elements such as

resistance and inductance coil [214].

The superconducting circuits with Josephson Junstican model
biologically realistic neurons. Josephson Juncti@urons can mimic many
characteristic behaviour of biological neurons wespect to action potentials,
refractory periods and firing thresholds [163]. idatpotential is of the order of
picosecond roughly a billion times shorter thant tbeother neuron models
(H-H neuron, FHN neuron etc.)[164]. The individgahctions behave like ion
channels. Josephson Junctions are easy to designexpensive to fabricate. It
is easy to fabricate up to 20,000 junctions usiagid single flux quantum
technology (100 GHz). Here a Single chip can md@€l00 neurons. Hence it
can be used for larger brain regions. Shorter ifraivee and less power
dissipation is an added advantage of the modés. piossible to model single

neurons with two Josephson Junctions [214,215].

Single flux quantum technology is used for neurgshar computing.
When operating in a low current regime near ciiticarrent, Josephson
Junctions naturally behave like spiking devices|21idis possible to compare
numerical solutions of the voltage and current &@qoa for the Josephson

circuit with simulations of other well-known biolmgl models. The results
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exhibit striking quantitative similarities betwetire models. Josephson Junction
can operate in parallel and a single Josephsoronedarisolation can run as
quickly as a thousand fully interconnected onesis Ifaster than computer
simulations of any other neuron model and thatctda biological ones.

The study of dynamics of Josephson Junction alsmwshpotential
applications in many fields such as secure comnatinic and the study of high
frequency of circuit[215]. The memristor coupleddphson Junction circuit is
effective to apply in the encryption and decryptioh an image[216]. The
present studies could be useful to construct aar&twf neuronal circuits in a
large scale so that the collective behaviours afroves could be detected and

investigated.

The effect of electromagnetic induction in Josephdanction circuit
model can be analysed by introducing the magnkticvariable into the model.
Here memristor[218] is used to realize feedbackvbeh magnetic flux and
Junction potential. When memristor is used in discuhe nonlinearity of
electric circuit is enhanced. Memristor can destitre effect of memory and
can bridge the output voltage and magnetic flugéyerating induction current.
Using improved model with memristor, the differemtodes of electrical
activities can be detected which is consistent witblogical experiments
[219-221]. Wu and et al. [220,221] imposed phasesen@mn the improved
neuron. A time-varying electromagnetic field wasduned to trigger different
modes of electrical activities and coherent resoearbehaviour was
observed[220]. Studies[221-223] showed that theotihasystem coupled by
flux controlled memristor can enhance the commuitna security and

nonlinear properties.

Recent studies[222] proposed a new nonlinear Ilthgaic model to

characterize memristor and an effective memristoulator has been designed.
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This enables the relationship between memductamtdlax to be expressed by
an inverse proportional function. It is significantfocus on the application and

analysis of this model in neuromorphic computing.

It is possible to simulate the neuronal electrieativity using the
biological neuron model and Josephson Junctionomeurodel. They can be
coupled together to mimic electrical and chemigalapses[214-217]. It helps
to understand the dynamics of collections of nesirdnhis observed that the
biological neuron models, such as Hodgkin—HuxleyH}l Hindmarsh—Rose
(H-R), Morris—Lecar (M-L) can be used to measurd aimulate the electric
activities of neurons[219, 222, 223, 68, 69, 6HeTime series of membrane
potential variables can be periodical or chaotidiifferent parameter regions.
Recent studies [222-229] showed that resistive-@amainductive-shunted
Josephson Junction(RCLSJ) model could be contraitedeproduce some
electric activities of FitzZHugh—Nagumo neuron mod@&lhe larger gain
coefficients were reported to be active to speed thp process of
synchronization. Studies [223,224] showed that plo&ver consumption of
controller is independent of the selection of gemefficients. Xinyi Wu and
et al. [221] confirmed electric activities in Joespn Junction coupled resonator
and in Morris—Lecar neuron. It is possible to desadectric circuits using the
Personal Simulation Program with Integrated Cir&ntphasis (PSPICE)[230].
The parameter regions were detected to generakingpand bursting for
neurons and these were consistent with the nunhegsalts. It is possible to
detect the excitability of the neuron model witHfuBcation diagrams for Inter

Spike Interval (IS1) vs.forcing current [222].

In this chapter the dynamics of Josephson Jundtoanalysed with
different memristors. Study on electromagnetic statun in Josephson Junction

with flux controlled memristor shows fast periodi@nd double periodical
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spiking. The studies indicate that the dynamicapprties of Junction potential
depend on the coupling intensity, the voltage amel nagnetic flux. Also
numerical studies of Josephson Junction with Itigamc memristor show
periodic spiking and suppression of oscillationblith cases chaotic nature of
system is predicted by Lyapunov Exponent versus ghit. These behaviours
are quite different from that of cubic flux contedd memristor[219, 208] where
the periodical, multi-periodical and chaotic statere reported for appropriate
gains. There it was found that the induction curienthe system generates
negative feedback at positive values of gain arel excitability and the
oscillating behaviours were found to be suppregs&j| The suppression of
oscillating behaviour with logarithmic memristor positive feedback is a
different feature observed in the present work.

The problem is defined in section 6.2, the dynamhmehaviour of
Josephson Junction with different memristors aseudised in section 6.3. In
section 6.4, an improved adaptive scheme is usedntol the RCLSJ model
to simulate the dynamical properties of H-R neurombe possibility of
generalized synchronization [222] between the tygiesns is examined in this
section. With the controller with suitable gain ffméents, it is effective to
reach synchronization. The dynamics is analyzedthsy time series, phase
portraits and by Lyapunov stability analysis. Tirseries behaviour shows
spiking, bursting and tonic spiking. Also it is shothat the gain coefficient of
the membrane potential of Josephson Junction nezxaorbe reduced such that
the H-R neuron membrane potential lies within thme range of variation of
the membrane potential of Josephson Junction.

The H-R neuron model can emerge into differentestasuch as
quiescent, periodical and chaotic state in appab@riparameter regions

[227, 228]. The electric activities of Hindmarsh-sRmeurons can be shown to
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be similar to that of Josephson Junction neuron atfpd6]. Here resistive—
capacitive—inductive-shunted Josephson junction LRI} [216, 214] is

exhibitng the same simulated behaviour as that iofitdarsh—Rose neuronal
discharges. Hence this model helps to understaadoé#ittern formation and

synchronization on network of neurons.
6.2.  Definition of problem

It is possible to enhance the nonlinearity of electircuits by using
memristor in circuits. Here the memductance is ddpet on the input current.
As a result the more complex dynamical behavioars lze resulted in [214].
Josephson Junction (JJ) coupled resonator alsemremmplex dynamical
behaviours in nonlinear circuit because JJ is uasdsensitive inductive

component.

The Josephson Junction circuit coupled with mewristan be

illustrated as below (Figure 6.1)

=

4

oo =9
I

{1 =3

C

- @

Figure 6.1: Josephson Junction circuit with memristor(adaptechf214])

Josephson junction current with memristor usingHaiff's law can be

written as
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Isource = Cd_v"'L + Icsiny+l, + Iy
dt Ry

_hady
T 2edt

@ _vy (6.1)

Where V is the potential of Josephson junctipnrepresents the
junction current. Nonlinear junction resistancaapresented bRy . Ispyrce 1S
the external bias currenty and h represents the phase difference in
superconductor and the planks constant respectigatyelementary charge and
R and L denotes resistor and inductor respectiaebyrcuit branch.

According to the Faraday’'s law of electromagnetiguiction, the
nonlinear memductance function and the inductiamecu for memristor[8] are

described as

_ dq(p) _ dq(e) do _
1= P = SR = plo)V (62)

Here p(¢)represents the memductance term. The analysisranaigs

of neuronal system with Josephson junction is dorke following sections.
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6.3 Dynamical behaviour of Josephson Junction with Different

Memristor
6.3.1. Cubic flux controlled memristor

The Josephson Junction circuit employing cubic flagntrolled
memristor is examined in this section. The dynahycaperties of the model

are explored also with respect to phase portraiisLyapunov Exponents.

When the effect of electromagnetic induction is sdared, dynamical
equations of four variable Josephson Junction modal be represented by
[223].

i :% [i — g(x)x; — sin(xy) — x5 — kox1 (6 + 392p)]

X=X
.1
x3ZE(x1 — X3)
p=kyxy — kyp (6.3)

Here u, the fourth variable (depicted ag in plots) describes magnetic
flux and memductance of flux controlled memristohieh is represented
by (6 + 3¢?u). The parameterk,, k; and k, are gains used to calculate the
effect of electromagnetic induction on junction.eTkerm k,u describes a

feedback of magnetic flux that contributes the tichin current.

For a Josephson Junction circuit, the nonlinear dusmtance function

and induction n current for memristor are describgthe equation

_ dq(p) _ dq(@)de _ _ 2
I= = =4y ac = P@V =ko(8 +3¢°1) (6.4)
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6.3.1.1 Time series analysis and Lyapunov exponepiot of Josephson

junction with Memristor

The fourth order Runge-Kutta algorithm is used rfamerical studies.
When the parameteksand k, are fixed, the relation between sampled junction
potentials and current of the inductance is detktiiegenerate different phase
portraits for the selectekl,. It is observed that by selecting appropriate gains
ko, periodic and doubly periodic fast spiking is résdlin. The dynamics is
studied for parameter values kgs= 0.1, k; = 0.4, k, = 0.6 and k, =
1.0, k; = 0.4, k, = 0.6 respectively. The parameter values for memrister ar
selected a®=0.2 and3=0.4. The sampled time series for output voltage ar
plotted by applying different feedback gain. Itdbserved that the gain on

magnetic flux control the abundant chaotic behagou
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(d)

Figure 6.2: (a,b)Fast spiking and corresponding phase portraitddsephson
Junction coupled with memristor for parameters eslas k=0.1, k=0.4,
k,=0.6 and(c,d) As gain parametergkchanges to 1, the neuron spikes with only
one voltage value at all time.

The distribution for magnetic flux in the junctiphays important role in
changing the dynamical properties of electricaivateds. Hence the chaotic
dynamics in the system of Josephson Junction wemnstor is also analysed
with Lyapunov Exponent spectrum. Existence of pasivalue of Lyapunov
Exponent for various values of the gaipdf the Josephson Junction circuit

shows chaotic nature of the system (Figure 6.3).
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Lyapunov Exponent

0 05 1 15 2 25 3 35 4 45 5
gam(ko)
Figure 6.3 Lyapunov Exponent verus gain for JJ circuit cedlplwith

memristor

So the numerical simulations of time series andpuy@v Exponent plot
versus gain confirmed the chaos for all valueseafdback gain in induction
current. Multiple electrical activities can be faum sampled time series for
junction potentials under appropriate feedback .géive gaink, regulates the
coupling between junction potential and magnetiax,fl which causes
diversification of junction current. The other fbedk parameterg; andk,

also help to detect the dynamical behaviours [223,2

By increasing parametep,kthe transition to doubly periodic spiking is
resulted in. It describes electrical activities response to electromagnetic
induction described by the memristor and magnéelix. fHence gain on
magnetic variable is found to be responsible foffedknt dynamical
characteristics [219,222].
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6.3.2 Logarithmic Memristor

When the effect of electromagnetic induction is sidered, the
dynamical equations for the four-variable Josephsomction model are
described by

. 1. ; :
=2 [1- gl = sinGe) = x5~ kora (5]

Xy=Xq
. 1
xsza(ﬁ — X3)
.X:4_ = k1x1 - k2x4_ (65)

Here g(x;) denotes the correlation between voltage and cumén

Josephson Junction.

0.366 x; < 2.9

9(x) = {0.0661 x1>29 (6.6)

The voltage, phase difference and induction currehtJosephson
Junction are represented lgy, X, andx; respectively. Here is the external

forcing DC current an@; are parameters of system.

Here x,, the fourth variable describes magnetic flux andnahectance

of logarithmic flux controlled memristor which igpresented b%). The
- 4

parametersk,, k;, and k, are gains used to calculate the effect of
electromagnetic induction on the junction. The t&pm, describes a feedback
on magnetic flux that contributes the inductionrent. The relation between
charge and flux in logarithmic memristor[221] care lobtained by

electromagnetic induction
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_dq(e) _ dqle)de _ _ 1
I= dt - do E - p((p)V - ko (a—ﬁx4) (67)

The fourth order Runge Kutta algorithm is used Hamerical studies
with time step 0.01. Initial values for Josephsamclion coupled with
logarithmic memristor are selected fox , x,, x3,x4) as (0.2,0.3,0.4,0.2). The

MATLAB platform is used for various simulations.

6.3.2.1 Time series analysis and Lyapunov Exponemtot of Josephson

Junction coupled with logarithmic memristor

Josephson Junction circuit model modified by a fibgaic memristor
is proposed. When the parameteysk, are fixed, the relation between sampled
junction potentials and current of the inductarscdatected to generate different
phase portraits by selecting appropriate gainskfpit is observed that for
different gainsk,, periodic spiking and suppression of oscillatiors doe
resulted in. The dynamics is obtained by selectpsyameter values as
ko=0.2,k; =06, k,=05and as k,=1.0, k;, =05, k, =0.6. The
parameter values for logarithmic memristor are deté asa=0.2 ands=0.4.
Here the negative feedback can be made strong briowguppress oscillations.
The sampled time series for output voltage aretgdoby applying different

feedback gain. Corresponding phase portraits aesflown in Figure 6.4a.
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Figure 6.4 (a,b) Periodic spiking and corresponding phas¢rgioiobtained by
selecting parameter valuesigs = 0.2,k; = 0.6, k, = 0.5 (c,d) Suppression of
oscillation is observed fok, = 1.0,k; = 0.5,k, = 0.2 respectively. The
parameter values for logarithmic memristor aretett ase=0.2 andf=0.4 in
both cases.

The distribution for magnetic flux in the junctipiays important role in

changing the dynamical properties in electricaivaas. It is interesting to find
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the parameter region for chaos by calculating #rgest Lyapunov Exponent
spectrum [221]. The variation of Lyapunov Exponeatsus gaink,) confirms
chaotic nature of selected system. The other pdesmare chosen &s = 0.6

andk, = 0.5 respectively.
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Figure 6.5 Lyapunov Exponent versus gain for Josephson iumcioupled
with logarithmic memristor

When the effect of electromagnetic induction is sdared, dynamical
equations of four variable Josephson Junction mod#h logarithmic
memristor show distinct chaotic behaviour. Numérgtadies confirmed that
the dynamical properties of Junction potential depen the coupling intensity

(ko) which bridged the voltage and the magnetic flux.

From numerical studies it is observed that JJ med#l logarithmic
flux controlled memristor shows distinct behaviowsmpared with that of

cubic flux controlled memristor [219-221]. In culiax controlled memristor
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sampled time series of membrane potential shows gesodic and double
periodic spiking [215, 221, 227]. The distributidor magnetic flux in the
junction changes the dynamical properties in daldtractivities. This is
confirmed by Lyapunov Exponent spectrum.

6.4 Electric activities and neuronal synchronizatin of Hindmarsh—Rose

neurons simulated by Josephson junction model

The dimensionless model of resistive—capacitiveaatigle-shunted
Josephson Junction is described by [219, 222, 226]

X1 :i [i — g(x1)x; — sin(x;) — x3]
Xy=Xq
.1
x3=B—(x1 — X3) (6.8)
L

Theg(x,) denotes the correlation between voltage and curoén

Josephson Junction.

0.366 x; < 2.9

9() = {0.0661 x1>29 (6.9)

The voltage, phase difference and induction currehtJosephson
junction are represented b ,x,andxsrespectively. Where i is the external

forcing DC current an@. andg, are parameters of system.
The original Hindmarsh—Rose (HR) neuron modelvegiby[68]
X4 = X5 — ax; + bxi — xg + Loyt

Xs = ¢ —dx? — xs
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xe = 1(s(xs — x0)) — x¢ (6.10)

a, b, c, d, r, and s are bifurcation parameterslasdexternal forcing
current. The synchronization between the two cpording variables is studied
by imposing appropriate controller on equation X6.8

The equation (6.8) for Josephson Junction modebeacontrolled by a
control functionu which is governed by the dynamics of both the Herron
and Josephson Junction neuron (Equation 6.11)). cbmrol function u is

derived from the positive Lyapunov function whishconstructed as [219].

X1 =2 [i = g(x)x; = sin(x;) = x3]

Xy=X1
L

The positive Lyapunov function is constructed a8]21

V = ae?+(é + afe)? (6.12)

2—: = 2aeé + 2(é + afle)(é + afe)

=2afV + 2aBV + 2aeé + 2(é + afle)(é + afe)
On rearranging

av

— = —2afV +2(é + afe)[é + 2afeé(a’B? + a)e] (6.13)

So condition for negative error dynamic equation

[é + 2aBé(a’B? + a)e]=0
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v ==2apV <0

ar = T2ab

V = Vye2abt (6.14)
u=—L.[c—dx2 — x5 — (Baxi — 2bxy) (x5 — axi + bx; — x5 + 1)

—r[s(xs +1.6) — x5) — ﬁi (i —g(x1)x; — sinx, — x3)

c

— X1C0SX, — B— (%1 — x3)
L

— 2B.af [xs —ax3+bx?—xs+1

1
- ,B_(i — g(x)xy — sinx, — x3)| = Be(a + a®B?) (x4 — X1)

(6.15)

The gain coefficientse and f can change the synchronization. By
controlling the gain coefficients for the modelstpossible to analyse different

dynamical properties.
6.4.1 Simulation of electric activity of neuronakynchronization

The initial values for the model are chosen fay,£,, x5, x,) as
(0.2,0.3,0.3 and 0.1). Depending upon the gainfiooeits different modes in
activities are resulted in. Simulation results confthat at certain values of
and B, the two systems reach phase synchronization. Benes analysis of
output variables from H-R and RCLSJ model could neach complete
synchronization for some values of gain parameteithin short transient
period. It means that system does not settle dovataible values. However, the
output time series of the two variables in the FiRl RCLSJ model are locked

for appropriate values of gain coefficients.
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With suitable values of gain coefficients, bothteyss show various
chaotic activities such as spiking, bursting andchyonized states etc. It is
observed that for=0.1 andf =0.01 both systems are in spiking mode [Figure.
6.6(a)]. The behaviour gets changed to burstinyigcfor «=0.05 ands =0.01
[Figure 6.6(b)]. On reduction of the gain coeffiti¢o « =0.01 with =0.01 the
tonic synchronization resulted in [Figure 6.6(cJhe two systems break their
complete synchronization for the values of the gaiefficients: bottw and 8

having value 0.001.
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Figure 6.6 Time series behaviour shows spiking, burstingjdespiking and
finally as a is reduced to value 0.001 the membrane potentidlosephson
junction- neuron gets reduced to have values shett the H-R neuron
membrane potential lies in the same range of vanat

It is possible to make the time series patternwaf systems identical
using controller with appropriate gain coefficients

6.5 Conclusions

The Josephson Junction circuit model (JJ Model)improved to
consider effect of electromagnetic induction byraducing the magnetic flux
variable in to the model. Memristor is used to imalfeedback coupling
between magnetic flux and junction potentigi(xThe sampled time series,
phase portraits and Lyapunov plots for junctioneptils of circuit in
Josephson Junction with the flux of the memristeriavestigated by nonlinear
analysis. By setting appropriate parameter valdast spiking of different

periodicity is observed. Also with logarithmic mestor, periodic spiking and
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suppression of oscillations are resulted in. foisnd that dynamical behaviours
and electrical modes are much dependent on magheticThis behaviours are
different from bifurcation studies of cubic flux mmoolled memristor, where
periodical, multiperiodical and suppression of baton were reported in.
Hence nonlinear properties can be enhanced by @ddemristor term, as a

result the present model can be used for potempiglications in network.

The chaotic circuit of Josephson Junction is usesirulate behaviour
of Hindmarsh—Rose neuronal discharges. The eleattigity of H-R neuron is
modified by Josephson Junction chaotic circuit Wwhig studied based on the
Lyapunov stability theory and using adaptive traointrol scheme. The
controller is approached analytically and two coltdible gain coefficients are
included. Simulation shows spiking, bursting, totyige behaviours and finally
as gain coefficientd) is reduced to value 0.001 the membrane potenfial
Josephson Junction neuron gets reduced to havesvauch that the H-R
neuron membrane potential lies within its rangeasfation. Hence the junction

potential can be modulated in response to extéoneihg parameters.

The memristor coupled with Josephson Junction itiisueffective to
apply in the encryption and decryption of an imdges observed that when an
external ac signal is forced into the junction, jhaction voltage has been
found modulated in response to the external forsiggal. These behaviours
confirm the possible applications of JJs in antfioeural networks [229,230].
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Chapter 7
Conclusions

The thesis mainly focuses on chaotic behaviour of neural systems. The
two different biological neuron models, such as Hindmarsh-Rose and Josephson
Junction models are selected and the effect of various coupling schemes on

them are anal ysed.

In H-R neuron with memristor based coupling, various behaviours such
as synchronization, anti- synchronization, oscillation death, amplitude death etc.
are observed which suggests the various possible dynamics of brain cells. Also
the observation of near death rare spikes is observed which is consistent with

the experimental analysis of rat brain.

The study of influence of electromagnetic inductions on neurons is also
done. It gives a pathway to understand electromagnetic flux influence on the
overall activity of neurons. The activity of neurons is examined with quadratic
and exponentia flux based memristor.

Effect of Gaussian white noise on electromagnetic induction is also
studied. It is shown that the memristor which produces magnetic flux can also
influence neurons. This result is relevant in the context of neuromorphic
guantum computation. Electromagnetic waves which can be produced due to
artificial nano-synapses is capable of modification of neuron dynamics which is
important in the context. Also energy is calculated in terms of Hamilton energy
to understand the neuron response to external forcing current and action
potential.

The effect of field coupling on the electromagnetic induction and the

corresponding modes of electrical activities with cubic flux controlled
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memristor are also examined. The influence of the magnetic flux on membrane
potential is studied. The field coupling contributes towards magnetic flux and
induction current, as a result, the modes in electrical activities are controlled.
The excitability of neuron mainly depends on the external forcing current and
larger external stimuli are found to be much helpful to excite neurons. The
present studies give instructive clues to understand the exchange of ions when

synapse coupling is absent and gives further insight into signal encoding.

Further, superconducting circuit with the Josephson Junction is chosen
to replace H-R neurons for electromagnetic study of neurons. The model is
improved to consider effect of electromagnetic induction by introducing the
magnetic flux variable in to the model. Memristor is used to realize feedback
coupling between magnetic flux and junction potential. It is observed that when
an external ac signal is forced into the junction, the junction voltage has been

found to be modulated in response to the external forcing signal.

Electrical activities of H-R neurons can be simulated with Josephson
Junction model. Here membrane potential of Josephson Junction- neuron gets
reduced to have values such that the H-R neuron membrane potential lies within

the same range of variation.

These behaviours confirm the possible applications of JJs as high-

frequency oscillator in artificial neural networks.

In an overal perspective, the analysis of the 3-d and 4-d Hindmarsh
Rose system, enabled examination of various phenomena like synchronization,
oscillation quenching mechanisms and near death rare spikes. The chaotic on
set is examined in terms of time series evolutions, Lyapunov Exponents,
stability analysis, bifurcation plots and adaptive track control methods etc.

Study of influence of electromagnetic induction and noise on neuron,
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Conclusions

examination of improvement of superconducting circuits with memristor,
investigation of the possibility of controlling the chaotic behaviour in the
neuron systems are some other important key points presented in the thesis.
Illustration of the role of different types of nanoscale memristors to enhance the
nonlinearity of the neuron model is relevant in the context of the memory
effects.
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