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INTRODUCTION

Tensor analysis is a branch of Mathematics concerned with relations or
laws that remain valid regardless of the system of co-ordinates used to spec-
ify the quantities. Tensors were invented as an extension of vectors to formalize
the manipulation of geometric entities arising in the study of mathematical

manifolds.

Tensor analysis or Tensor calculus which is an extension of vector
calculus to tensor field was developed by Gregorio Ricci-Curbastro and his
student Tullio Levi-Civita.Contrasted with the infinitesimal calculus, tensor
calculus allows presentation of physics equations in a form that is indepen-

dent of the choice of coordinates of the manifold.

Tensor is defined as an objective entity having components
that change according to a transformation law.Tensors have many applica-
tions in geometry and Physics.Tensor calculus has many real life applications
in Physics and Engineering including elasticity,continnum,electromagnetism

etc.

In creating the general theory of relativity,Albert Einstein argued that the
laws of physics must be the same no matter what co-ordinate system is
used.This led him to express those laws in terms of the tensor equations.While
tensors had been studied earlier, it was the success of Einstein’s general theory
of relativity that gave rise to the current widespread interest of mathemati-

cians and physicists in tensors and their applications.



Chapter 1

INTRODUCTION TO TENSOR
ANALYSIS

1.1 PRELIMINARIES

Definition 1.1 n-dimensional space:

An ordered set of n variables say,x',z?,..x"

15 called the coordinates of a
point tn an n dimensional space. The set of all these points together forms an

n-dimensional space,denoted by V,,

Definition 1.2 Einsteins Summation Convention:

Consider the sum of the series S = a1x' + asx® + ... + apa™ = Zle a;x'. By
using summation convention, the sigma sign is dropped and the convention
18 written as

S ait = ax

This convention is called Finsteins Summation Convention. This can be stated
as If a suffix occurs twice in a term, once in the lower position and once in

the upper position then that suffix implies sum over defined range.’

Definition 1.3 Dummy index: An index that is repeated in a given term is

called a dummy suffix. It 1s also called Umbral or Dextral Index.



Definition 1.4 Free index: Any index occuring only once in a given term is

called a Free indez.

Definition 1.5 Kronecker Delta: The symbol 6; ,called Kronecker Delta s

defined by

, L,if i=j

§i = fi=]
0,if i # j

It is also denoted by the symbols 6" andd;;

PROPERTIES:

1.If 2!, 22, ..., 2" are independent coordinates , then

0r = 0,if i #j

ort 4 e .
g7 = Lifi=

This implies that 27”5; = 5;

2.0 =n
3.aij5,‘z = a'*

4. 5;5% =0,
The superscripts are used to denote the components of a contravariant tensor.
The subscripts are used to denote the components of a covariant tensor.The

components of a mixed tensor is denoted by both superscripts and subscripts.

Definition 1.6 Tensor :A Tensor is a mathematical object analogous to, but
more general than a vector, which is represented by an array of components

that are functions of the coordinates of the space.

Definition 1.7 : Tensor Analysis Tensor Analysis is the branch of Math-

ematics concerned with relations or laws that remain valid regardless of the

4



system of coordinates used to specify the quantities.

Tensor Calculus is an extension of vector calculus to tensor fields. Contrasted
with the infinitesimal calculus, tensor calculus allows presentation of physics
equations in a form that is independent of the choice of coordinates of the

manifold.

Definition 1.8 Invariant:A function f(x!', 2%, ...,2") is called scalar or an

imvartant if its original value does not change on the transformation of coor-

dinates from ', 2%, ..., 2" to T, 7%, .. 7"

o(zt, 2%, ..., 2") = ¢(z", 72, ..., T")

1.€.,

Scalar is called a tensor of rank zero.

1.2 CONTRAVARIANT AND COVARIANT VECTORS

Let (x!, 22, ...,2™)ora’ be coordinates of a point in X-coordinate system and
(1, 7%, ...,7") or T' be the coordinates of the same point in the Y-coordinate

system.

Definition 1.9 Let A’ i = 1,2, ...,n be n functions of the coordinates x*, 2%, ..., "

in X-coordinate system.If the quantities A* are transformed to A in Y-coordinate

system then according to the law of transformation

T 9T A j_ daipt
A =g5A or AV =95 A

Then A" are called components of contravariant vector.

Definition 1.10 Let A;,i = 1,2, ...,n be n functions of the coordinates x', 22, ..., x

in the X-coordinate system. If the quantities A;are transformed to A; in the

Y-coordinate system, then according to the law of transformation



A = gﬁA or A; = C%A

Then A; are called components of a covariant vector.

The contravariant (or covariant) vector is also called a contravariant (or

covariant) tensor of rank one.

Example 1.1 Ifz' be the coordinate of a point in n-dimensional space , show

that dz' are components of a contravariant vector.

Solution:

2

Let z!, 22, 2

., x" be coordinates in X- coordinate system and T, 7%, ..., T" be

the coordinates in the Y-coordinate system.

If
i OT! OT! OT!
dz' = 51 dx + 92 da: + ...+ pye

L oF
dz' = ax]dx

It is the law of transformation of the contravariant vector. So, dx' are

d’rL

components of a contravariant vector.

Example 1.2 Show that gﬁ- 1 a covariant vector where ¢ 1s a scalar func-

tion.
Solution:
Let x', 2%, ..., x" be the coordinates in the X- coordinate system and T, T2, ..., 7"

the coordinates in the Y- coordinate system.

Consider oz, 72, ..., 7") = ¢(zt, 2%, ..., ")



0¢ = 2502" + 95022 + ... + L202"

0 __ 9¢ Ot 0¢ 92> ¢ Ox™
T’ — Ozl oz z T T o o
96 _ 96 0w
ozt~ 0z oF°

0 __ Ox’ 09
" 5% = or 0w

It is the law of transformation of the components of a covariant vector. So,

gqi_ 1s the component of a covariant vector.
X

Example 1.3 :Show that the component of the tangent vector on the curve

i an n-dimensional space are components of a contravariant vector.

Solution:
Let dft : dft e dt " be the components of a tangent vector of the given point
(xl, 2%, ..., 2") i.e., dc‘ﬁ 18 the component of the tangent vector in the X-coordinate

system. Let the component of the tangent vector of the point (T*,72,...,T")

dac

in the Y- coordinate system are “5-.

2

2 =N ; 1
..., Tare functions of x*, x°,

Then z', 22,

So,

™ which are functions of t.

dz' _ 9z’ dx' | O da? oz’ da™
dt ~— dx! dt + dx? dt +o.t dx™ dt

dz' _ 07 dx’
At ~ dal di

It is the law of transformation of the components of a contravariant vector.

So, % s component of a contravariant vector.



i.e., the component of tangent vector on the curve in the n-dimensional space

are the components of a contravariant vector.

Example 1.4 : In rectangular cartesian coordinates, the components of ac-
celeration vectors are (%,7). Find these components in polar coordinates.
Solution:

In polar coordinates x = rcos@ , y = rsinf. This implies ,

dx = drcos @ — (rsin6)df dy = drsin6 + (rcos 0)do (1.1)

By solving these equations we get.,

dr = cos fdx + sin 0dy df = (_—1 sin 0)dx + (1 cos 0)dy (1.2)
r r
We put,
(z,y) = (¢',27%), (r,0) = (@, 7°) (1.3)
(i.§) = (AL ), (ar,a9) = (A 4) (1.4)

where a,,ag are components of acceleration vectors in polar coordinates.

Now , from (1.2) using (1.8)and (1.4) we get

dz' = (cos 0)dz! + (sin 0)dx?

dz* = (= sinf)da! + (+ cos §)da?

r

Hence,

—1 —1
% = cos b, % = sin f (1.5)



0z 1 . o 1

@ = —;Slne, @ = ;COSH
Thus,
—1 ozt | oTt . o
a,=A = %A + @A = (cos @)z + (sinf)y
and
. =2 =2 1 1
ap=A = %Al + %fﬁ = (—; sin 0)% + (; cos )

From (1.1), we get

i =% = (cos)r — r(sin)d

i = (cos 0)i — 2(sin 0)0r — r(cos 0)0% — r(sin )0

y = (sin®)r + r(cos 0)0

ij = (sin 0)7 + 2(cos 0)07 — r(sin 0)6? + r(cos 6)0

Using (1.9) and (1.10)., we get from (1.7) and (1.8) that

ar:f—rm, agzé—l—%v'"@

(1.8)

(1.9)

(1.10)

Example 1.5 :The components of a covariant vector in rectangular carte-

stan systems are

Find these in polar coordinates.

Solution:



Let the corresponding components in polar coordinates be Ay, As. Then we

can write

—  Oxt dz?
—  Ox! dz?

Similarly from (1.1) we get,

da! = dz' cos — (rsin 0)dz>

dz® = dz' sin 0 + (r cos 0)dz>

Hence.,we get

1 1 .
% = cos ), % = —rsinf
9

. 2
o1 = sind, % = rcosf

Using these relations and (1.11) and (1.12) we get,

Ay = cosf(¥) + sin 0(5;) = sinf + cos 6

- .2 2
. . y x\ _ _ ,.sin“f cos® 6
Ag—?“SlIl@(x)—FTCOSQ(y) - Tcos@ —i_rsine

1.3 CONTRAVARIANT TENSOR OF RANK TWO

2

Let AY(i,5 = 1,2,....n) be functions of coordinates x*, 22, ..., 2" in X-coordinate

system. If the quantities AY are transformed into A% in the Y-coordinate

1 =2

system having the coordinates as T ,x°,...,x" ,then according to the law of

transformation

10



T4 __ oz 0T Akl
AT = ok BxlA

Then such AV are called the components of contravariant tensor of rank two.

1.4 COVARIANT TENSOR OF RANK TWO

2

LetA;;(i,j = 1,2, ...,n)be n? functions of coordinates ', x?, ..., 2" in X-coordinate

system. If the quantities A;; are transformed into A_w in the Y-coordinate

system having the coordinates as T', T2, ...,T" ,then according to the law of
transformation

A.. — 028 oa!

Aij = S5 ow

Then such A;; are called the components of a covariant tensor of rank two.

1.5 MIXED TENSOR OF RANK TWO

1 ,..2 n

Let A;(i,j = 1,2,...,n) be n® functions of the coordinates x', %, ...,2" in

X-coordinate system. If the quantities Aj are transformed into A_z in the Y-

1 =2

coordinate system having the coordinates as T*,T*,...,x" ,then according to

the law of transformation

Ai . 0% 9! Ak
Aj — ozt ozl

Then A} are called the components of the mized tensor of rank two.

Theorem 1.1 The Kronecker delta is a mized tensor of rank two.

Proof:
Let X and Y be two coordinate systems. And let the component of Kronecker

delta in the X-coordinate system be 5} and the component of Kronecker delta

11



in the Y-coordinate system be 5_; , then according to the law of transforma-

tion, we can write ,

5T o _ o oul ot
Jj oz~ Oxk ozd O

y_ 0z' 9z! sk
Jj— oxkozi”l

This shows that Kronecker 5; 1s a mized tensor of rank two.

1.6 HIGHER RANK TENSORS

Consider N? functions AY which are defined in x', 22, ..., 2" coordinate sys-

1 =2

tem. If due to a change in coordinate system T', 72, ...,T", the quantitiesA"

transform according to the eqn

—ij  O0x OF

AV = pkm (1.13)
oxk dx™

Then we call AV the components of a contravariant tensor of second order.

Similarly , if the N* functions A;; transform according to the law

k m
A4, = dr o, (1.14)

v oT o7
We call A;; the components of a covariant tensor of second order

Again, if we have N? functions Aé which transform according to the equation

— 0T 9T
I = ok o (115)

12



We call Aé the components of a mixed tensor of second order.

A set of N**P quantities

kika...ks
Amlmg...mp

is said to be the components of a mixed tensor of (s+p)th order, if they

transform according to the equation

==k ==k q q
—k1ko.. ks _ 6(1:1 axg axl axp t1to...1g
mM1Mma...My 5563 axi 35? 8521 q192---9p

1.7 SYMMETRIC AND SKEW SYMMETRIC TEN-
SORS

Definition 1.11 Symmetric Tensors:
A tensor is said to be symmetric with respect to two contravariant (or two
covariant) indices if its components remain unchanged on an interchange of

the two indices

Example:
1. The tensor AY is symmetric if AV = A

ijk . o ogijk _ ajik
2. The tensor A, is symmetric of A" = Ay~

Theorem 1.2 A symmetric tensor of rank two has only %n(n + 1) different

components in n dimensional space.

Proof:

Let AY be a symmetric tensor of rank two , then AY = AT,

13



All A12 AlS .. Aln
A21 A22 A23 .. A2n
The components of AV are | A3l A32 433 ... p3»

Anl An? An3 R

components . Out of these n? components , n components

i.e., A will have n*

AM A2 A3 A™M™ are different. Thus remaining components are (n? —n),

in which A2 = A2, A = AP etc due to symmetry.

1

So, the remaining different components are§(n2 — n)Hence the total number

of different components

1 1

Definition 1.12 Skew-symmetric Tensor:
A tensor is said to be skew-symmetric with respect to two contravariant (or
two covariant) indices if its components change sign on interchange of the

two indices

Example:
1. The tensor AY is skew-symmetric if AY = — A
2. The tensor A;ﬁf s skw-symmetric if Aﬂf = —Aﬁf

Theorem 1.3 A skew-symmetric tensor of rank two has only %n(n —1) dif-

ferent non zero components .

14



Proof:

Let AY be a skew-symmetric tensor of rank two , then _A” = A,
0 A12 A13 .. Aln
A21 0 AQS .. AQn
The components of AV are | A3l A32 (0 ... A3¢
Anl An2 AnS .. 0
[since, Al = —A1 = 24T = () = A = 0 = A = A2 = = A" = () i.e.,

AV will have n® components . Out of these n?> components , n components
AN A2 A3 A™ are zero. Thus remaining components are (n® —n), in
which A2 = —A?' A = — A32etc due to skew-symmetry.

1

So, the remaining different components areg(nz — n)Hence the total number

of different non-zero components

= %n(n —1)

Theorem 1.4 A covariant or contravariant tensor of rank two, say, A;;jcan

always be written as a sum of a symmetric and a skew symmetric tensor.

Proof:
Consider a covariant tensor A;; . We can write A;; as
Ay = %(Aij + Aji) + %(Aij — Aji)
Ajj = Si; + Ty,
where
Sij = %(Aij + Aj;)

and

1
Tij = 5(Ay — Aji)

15



Now
1
,Sji = E(Aﬂ + AZ]) ;Sji = Sij

So Si; s symmetric tensor.

and

So, Tj; is skew symmetric tensor.

16



Chapter 2

TENSOR ALGEBRA

2.1 ADDITION AND SUBTRACTION OF TENSORS

Two tensors are said to be of same type if they have same number of con-
travariant and covariant indices. Thus Aék and B;.k are same type of ten-
sors.Such tensors can be added and subtracted to produce a single tensor. Hence
the sum and diffrence of the tensors Aé-k and Bjk are respectively the tensors
;k = A;‘k + B;‘k
ik = Ay — By
Theorem 2.1 If Azj and B"™ are tensors then,their sum and difference are

tensors of the same rank and type.

proof:
Since Aék and B;-k are tensors , then,according to the law of transformation,
g woror
Y Oxr Oxe 9T

and
=i _ o7 @ ox" ..
B g Ozt 9Tk T

Then,
oz’ @ ox"
OxP Qx4 O

17
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(Ap+ BpY)



If
A} + B =C)
(Ap & By =
So,
o 0w o',
OxP Ox1 OT" "

This shows that C,ij 1S a tensor of same rank and type as that of AZj and B,ij

Cp =

Theorem 2.2 The sum(or difference) of two tensors which have the same
number of covariant and the same contravariant indices is again a tensor of

the same rank and type as the given tensors.

Proof:
Consider the two tensors A;ff’ and Bﬁfz of the same rank and type.

2...]s 2...]s

Then by the law of transformation,

—ivig.d, 0T 0T 0T Ozt Oz Qxls

AT = : ' _ AP1P2---Pr
JiJ2eds - Qb1 Qb2 Qb O Ol Ols N42ds
and ,
iz oz oz Oz'n Oz Jx® Ot
s Qapn ap2 T Qe 0T O Ods N
.Then ,
. L. =11 =elo =0 q1 g2 q
Al g Bt 0z" Oz oz" Oz Oz Oz (Aplpz---pr + Bplpg...pr)
J1J2---Js J1J2---Js OxPr OP2 '”6xpr 8§j1 asz "'afjs q1q2---9s q192---9s
If.,
—iyin. iy | msiyio..dy  —=itig..ip
Ajjos T Bjijoje = Chioi,
and

AP1P2~--pr :|: BP1P2-~-Pr

q1492-..9s q142-..4s

18



So.,
i Ooz" Oz Oz’ Oz Ox® Ozt .
Bdesds = Qapr Qg2 Qpr QT 9T OTs DOt

It 1s the law of transformation of a mized tensor of rank r+s

So C’;IZ g s a mized tensor of rank r+s or of type (r,s).

2.2 MULTIPLICATION OF TENSORS

Definition 2.1 Outerproduct:The outer product of two tensors denoted by
B,Zjl and C1¢ is defined as

uvwT

Azyqrs - Bzmoqm

kilmuvwx — UVWL

NOTE:
The division of a tensor of rank greater than zero by another tensor of rank

greater than zero is not defined.

Theorem 2.3 The multiplication of two tensors is a tensor whose rank s

the sum of the ranks of the two tensors.

Proof:

Consider two tensors A}”?“"Z’ , Bﬁﬁ;’

Then by the law of transformation,

ivieir _ Om 9z 9T 02 0% 03 Apips..pr
J1J2--Js OxP1 9xP2 *** QxPr 9T/ 9FI2 T 97 Tq1q2---Gs

and,

Fklk? _ o7k gz gzhm 9P §2B2  9xPr patas...on,
Lilaodn 7 Qxo1 9x2 " Ozom 9zl 9zl2 " gzn T P152---Bn

19



Then their pmduct 18,

—i189...0r k1 k2.
AJ132 ]sBlllZ
0@“ 8@12 af% axih axQQ 83;% 85161 asz (95’“” axﬁl a.ﬁUﬁQ 6&1”8" Ap1p2 pr 1t
OxPr QxP2 " OxPr O 02 OFls Oz Ox®2 Oxom Ol T2 Opin T Ne Bra---Bn
If
—ilig...irk‘ﬂ{?g..km —Zlig...ir —klk‘gkm
lejg...jslllz.ln — Ajljgnglllgln
and,
CP1P2 Droq .0y AP1P2 Pr a1Q2...0,
q192---9sB1B2..8n q1q2-- B1B2...0n
So,
Ovizirkikeckn. g g2 om' et 92 Qwfs EM 9Et2  9EMm 0L 9xP2  Qan Apip2-Pr01 s

Jrja--dslileln T QzPL OzP2 Tt OzPr 9Tt Oz2 T Oxde 0x°1 0x°2 T 0zom 9z oz2 T 9T~ qiga---qsBia--Bn

This is law of transformation of a mixed tensor of rank r + m + s + n.

S 01122 Zrklkz..k’

g diila d, 18 @ mized tensor of rank r + m + s + n or of type (r + m,

s + n). Such product is called outer product or open proudct of two tensors.

Example 2.1 :
If A" and Bj are the components of a contravariant and covariant tensors of

rank one, then prove that AiBj are components of a mized tensor of rank two.

Solution:
As A" is contravariant tensor of rank one and Bj is covariant tensor of rank
one.

Then according to the law of transformation,

. 0T

k
oxk FEC

A = (2.1)

20



B; = —B (2.2)

Multiply (2.1) and (2.2), we get,
oz’ O

AB; == 2_AFB
~ Ok o7 :
This is law of transformation of tensor of rank two. So, A’ B; are mixed tensor
of rank two.
Example 2.2 :

Show that the product of two tensors Aé- and BM is a tensor of rank five.

Solution:

Since,Aé. and B,’%l are tensors,

by law of transformation,

T _ 0T Oxt A7

Y i

and
—k _ OT" 0T O

m Qxr QxS OT™

Multipying these,we get,

ikl OTt Ox 0T 0T Ot
A B,, Ap By?
Oz 0T Oxr Oxs OT™

. . . y kl .
This 1s law of transformation of tensor of rank five. So, A;B,; is a tensor

of rank five.

2.3 CONTRACTION OF A TENSOR

Definition 2.2 The process of getting a tensor of lower order (reduced by 2)

by putting a covariant index equal to a contravariant index and performing

21



the summation indicated 1s known as Contraction.

In other words, if in a tensor we put one contravariant and one covariant

indices equal, the process is called contraction of a tensor.

Example 2.3 : Consider a mized tensor A;f?f of order five
by law of transformation,
ik _ 0T 0% 0% 0x* O’y

e Qap 92 Oz 9T 0T

Put the covariant index | = contravariant index i, so that,
ik _ 0T 0T 0" 0x* O’y
e Qap Oxt Oz 0T 0T
0T 97" Oz 02!
~ Ox¢ Ox" OxP OT™
S —
_ 0w on ozt 55 AP
x4 Oxr o™ P

par
f4st

(Since, 2% = 0,)

) OxP .
—iji 0% 0T 9a'

A APQT

m 9z g T P
This is law of transformation of tensor of rank 3. So, Aﬂf 1$ a tensor of rank
3 and type (1, 2) while A% is a tensor of rank 5 and type (2, 3).

i.e, that contraction reduces rank of tensor by two.

2.4 INNER PRODUCT OF TWO TENSORS

Definition 2.3 Consider the tensors AZ and B! . First form their outer
product A?chfnn and contract this by putting | = k then the resultant is also a
tensor, which s called the inner product of the given tensors.

Hence the inner product of two tensors is obtained by first taking outer product

and then contracting it.

Example 2.4 : If A" and B; are the components of a contravariant and

covariant tensors of rank are respectively then prove that A'B; is scalar or

22



mvariant.

Solution :

Since, A" and B; are the components of a contravariant and covariant tensors
of rank one respectively,

then by law of transformation,

i _ OT! »
oxP
and i
— T

ot 1

Multiplying these,we get,

Zi_ — 8_781"1 p

LT 9ap oz 1
ox?
_ Y9
- (9pr By
= 5gAqu
(Since,% = 55)
= A’B,
1.e,
A'B; = A’B,

This shows that A'B; is scalar or Invariant.

Example 2.5 : [If A;is mized tensor of rank 2 and B¥ is mived tensor of
rank 3,Prove that is a mizved Aé-B#L tensor of rank 3.

Solution :

As A;is mized tensor of rank 2 and BF! is mized tensor of rank 3,

by law of transformation,

—i 07 Oxt )
I ap oz Y

and
—k _ OT* oT' O B
™ 9z Qx0T !
put k=j,then, _
—ji 0T 0% 92! B

m QT Oxs OT™
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Then, _ .
0T 0x4 07 0T Ot

AB) = APBy?
ox? 07 Ox" Oxs OT™
—1
Y
xP 0x® Ox™
(Since, g”’] gii = gfj = §9)
i.e, ‘
jl 8_1 8fl aZEt P S
A Bu — QxP Oxs O™ Ath

(Since,01B;* = B}’ )

This is the law of transformation of a mixed tensor of rank three. Hence

A;B% 15 a mized tensor of rank three.

2.5 QUOTIENT LAW

Using this law, we can test whether a given quantity is a tensor or not. Sup-
pose that a quantity A is given and we have to check whether A is a tensor

or not.
For this, we take the inner product of A with an arbitrary tensor, if this inner

product is a tensor then A is also a tensor.

STATEMENT:

If the inner product of a set of functions with an arbitrary tensor, is a

tensor, then these set of functions are the components of a tensor.

Example 2.6 :
Show that the expression A(i, j, k) is a covariant tensor of rank three if

A(i, §, k)B¥ is covariant tensor of rank two and B¥ is contravariant vector

Solution:
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Let X and Y be two coordinate systems.

As given A(i, j,k)B* is covariant tensor of rank two then,

_ - D q
A(i, . kB = 220 . r) B (2.3)
€T

B” is a contravariant vector,then,

or

From (2.3),

— —k  OzP Ox?0z" —k
A(i,j,k)B = == ————A B
(i,5, k) 57 9 o P> 47

_ a0
T O OFF

A, j, k) A(p,q,r)

i.e,A(i, 7, k) is covariant tensor of rank three.

Example 2.7 :
If A(i,j,k)A'BICy, is a scalar for arbitrary vectors A;, B/, C). Show that
A(i, j, k) is a tensor of type (1, 2).

Solution:

Let X and Y be two coordinate systems. As given is scalar. Then A(i, j, k) A'BIC,

1 a scalar,

A(i, 5, k)A B’ Ty = Alp, q,7) AP BIC, (2.4)
Since
A’. B7 and C}, are vectors ,then,

L 0T OxP —;

A AP or AP =




_.7 bl q q __ _.7
B aqu or orBY = —anB
—k 851{; axq—]
C = c” C"==—B
oz or o7

Substituting in (2.4)

— — 0xP 0z 00" —j—i—j—
A1, . KVA B CL = A = " BABC
(7'7ja ) k (p7Q7T) 851 8%7 afk k
— OxP 0x4 Ox"
A1, 7. k) = ————A
(6,5, k) = 55557 AP 4:7)

i.e,A(i, 7, k) is tensor of type (1, 2).

2.6 CONJUGATE (RECIPROCAL ) SYMMETRIC TEN-
SOR

Consider a covariant symmetric tensor A;; of rank two. Let ’d” denote the
determinant |A;;|with the elements A,;.
i.e,d =|A;;| and d # 0.

Now,define AY by,
_ Cofactorof Ay
B d

A" is a contravariant symmetric tensor of rank two which is called conjugate

Al

(or Reciprocal) tensor of A;;.

Theorem 2.4 If B;; is the cofactor of A;; in the determinant d = |A;;| #
Oand A;; defined as,

d

Then, Aj; A% = §F

Al —

Proof:

From the properties of the determinants, we have two results
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== AijBf =1
= AijAZ] =1
2. AijBkj =0
= Ayt =
= AijAk‘j =0
From 1 and 2,
A AR = b
0 if

i.e, AijAkj = (Sf

(Since, AV = B‘ij )

(' since d # 0)
(if i # k)

] =

ey
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Chapter 3

METRIC TENSOR &
REIMANNIAN METRIC

3.1 THE METRIC TENSOR

Definition 3.1 In rectangular cartesian coordinates, the distance between
two meighbouring point are (x,y,z) and (xr + dz,y + dy, z + dz)is given by
ds? = da® + dy* + dz* .

In n-dimensional space, Riemann defined the distance ds between two

neighbouring points ' and z' + dz'(i = 1,2,...n) by quadratic differential

form,
ds® = gll(dx1)2 + grodatda® + - - - + gipdatda”
+gnda’dz' + 922(dﬂl?2)2 + -+ gondatda”
R T T T PP
+gmda"dxt + gpoda"da® + - - - + gon(da™)?
1.e,

ds® = gi;da'da’ (i,5 = 1,2,....,n) (3.1)

,ustng summation convention.

Where g;; are the functions of the coordinates x'such that

g=19i] #0
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The quadratic differential form (3.1) is called the Riemannian Metric or Met-
ric or line element for n-dimensional space and such n-dimensional space is
called Riemannian space and denoted by V, and g;; is called Metric Tensor
or Fundamental tensor.

The geometry based on Riemannian Metric is called the Riemannian Geom-

etry.

Theorem 3.1 The Metric tensor g;; is a covariant symmetric tensor of rank

two.

Proof :

The metric is given by,
ds® = gijdz'dr? (i,5 = 1,2, ....,n) (3.2)

Let 2' be the coordinates in X-coordinate system and Z* be the coordinates
in Y-coordinate system. Then metric ds* = g;;dz'dz’ transforms to ds* =
g;,dT' dz’

Since distance being scalar quantity,

ds® = g;jda’da’? = g,,dT' dz’ (3.3)

The theorem will be proved in three steps.

1. To show dx’ is a contravariant vector
—1 _ =i 1,.2 n
If 7 =7"(z 2%, ...2"),

0T 0T T

. L 0T
=i 1 2 n
i oT'
dr' = 5 dx

(3.5)

It is law of transformation of contravariant vector. So, dx' is contravari-

ant vector.
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2. To show that g;; is a covariant tensor of rank two.

Since, _ .
o7 o5
7’ = a—;dx’f and  di = a—ildazl
from equation(3.3)
L. o o
gijdz'dr’ = gij@dx @dl‘
L. oTor |,
gijdz'dr’ = gij@%dx dx
oz’ 07
kgl — kool
Since, g;jdr'dz! = gyda®dx (i,j are dummy indices)
_orow ..,
[gkl - gz'jW@] dz"dx’ =0
oz’ 07’
- gz o

9kl — gij@%
as dz* and dzx! are arbitrary.
_ o0zt o7
gkl = gij@@
or,

_ oz 0z
i = I o o

So, gi; is covariant tensor of rank two.

3. To show that g;; is symmetric. Then g;; can be written as,
1 1
9ij = 5(9@' + gji) + 5(9@' — ji)

9ij = Aij + Bij

where
1 .
A= é(gz'j + gji) = symmetric
1
Bi; = §(gij — gji) = skew — symmetric
Now

gijdx'dr’ = (Ay; + Bij)da'da’
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(9i; — Aij)da'dx’ = Bijda'da’ (3.6)
Interchanging the dummy indices in B;;dz'dz/ ,we have,
Bydx'dx’ = Bjdz'da’
Bijdxidxj = —Bijdxidxj
Since B;; is skew-symmetric,i.e, B;j=-D5;;
Byjdx'dx’ + Bjjda'da’ =0
2B;;dz'dr’ = 0
Bl'jdxidxj =0
So from(3.6),
(gij — Ayj)dx'dx? =0
= gij = Ayj

as dx',dx’ are arbitrary.

So, gijis symmetric since A;; is symmetric. Hence g;; is a covariant

symmetric tensor of rank two. This is called fundamental Covariant Tensor.

Example 3.1 : Show that g;;dz'dz’ is an invariant.
Proof:

Let 2' be coordinates of a point in X-coordinate system and T’ be coordi-
nates of a same point in Y-coordinate system.

Since gi; 15 a Covariant tensor of rank two.

Then,
_ oxF Ox!
i = IR gt o
. oxk Ox!
9ij — Gkl 9T o5l =0
k ol
[?z‘j - gkz%%} dz'dx’ =0
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Oxk Ox!

gijdx'dr’ = gy o 7
i 8:1: (%
gijdl" dz’ = g o Y g

1.€,
ﬁijdxidxj = gudxtds!

So, gijdz'dx’ s an wariant.

3.2 CONJUGATE METRIC TENSOR

Definition 3.2 The conjugate Metric Tensor to g;; , which is written as g"

, s defined by
g
whereB;; is the cofactor of gi; in the determinant = g = |g;;| # 0

By theorem (2.4),

g7 =

Ay AR = §F
so,
9ig" = o;
NOTE:

(i) Tensors g;; and g“ are Metric Tensor or Fundamental Tensors.

(ii) g;; is called first fundamental Tensor and g/ second fundamental Tensors

Example 3.2 :
Find the Metric and component of first and second fundamental tensor is

cylindrical coordinates.
Solution:

Let (x', 2%, 23) be the Cartesian coordinates and (T, 72, 7%)be the cylindri-

cal coordinates of a point. The cylindrical coordinates are given by,
x=rcosb,y=rsinf,z ==z
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So that,
r=x,x" =y, =z and T =rzT =0,1°==2 (3.7)

Let gi; and g;; be the metric tensors in Cartesian coordinates and cylin-

drical coordinates respectively.
The metric in Cartesian coordinate is given by,

ds® = da® + dy* + dz*
ds* = (dz")? + (dx?)? + (d2®)* (3.8)

but,
ds® = gijda'da’ (i,5 = 1,2,3)

ds® = gll(dasl)2 + grodrtda® + gizdatda?®
+gondz’dz' + goo(da®)? + +gazda*da’

+gada’dat + gpodrida® + +g33(da®)? (3.9)

Comparing (3.8) and (3.9), we have,

911 = g2 =g33 =1 and g2 =013 =021 =923 =g31 =0

On transformation,g;; = gi; gﬂ ng, since,g;; is a covariant tensor of rank
two(i,j=1,2,3)
. ox! Ozt 0x? 02 ox3 0x®
9ij = 9N 5 og + g22 9 + 933 o o7

Since,i,j are dummy indices,

Put i=j=1
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Since,gi2 = g13 = go1 = g23 = g31 = 0

_ oz \ 2 ox2\ > 03\ 2
911 = 911 (@) + g22 <@) + 933 (ﬁ)

g1 = 8—x 2+ @ 2+ % 2
g1 = gn I g22 ar g33 ar

Since,x = rcosf,y =rsinf,z =z

Ou :0039,@ :sinﬁ,% =0

or or or
and g1; = g2 = g33 =1

= G, = cos’ 0 +sin’ 6 + 0

g1 =1
Put i=j=2

Since,gi2 = g13 = go1 = g23 = g31 = 0

_ oz \ 2 ox2\ 2 93\ 2
922 = 911 (@) + 922 <ﬁ) + 933 <ﬁ>

g1 = 8_x 2+ @ 2+ % 2
g = gn 20 g22 90 g33 90

Since,x = rcosf,y =rsinf,z = z

Ou —rsinﬁ,% = rcos@,% =0

00 90 90
and g1 = ga2 = g3z = 1

= Gog = (—rsind)? + (rcosf)* + 0
Goy = 7" sin* @ 4 1" cos? 4

— _ T
gog =T

Put i=j=3

34



Since,gi2 = g13 = go1 = g23 = g31 = 0

_ o\ 2 ox2\ 2 93\ 2
933 = 911 (@) + go22 <ﬁ> + 933 <@)

g1 = 8_x 2+ @ 2+ % 2
g1 = g1 92 g22 G g33 G

Since,x = rcosf,y =rsinf,z =z
dr 0y 0z

PR iy

and gi1 = g2 = g3z = 1

= g3z =1

SO??II = 17?22 = T27§33 =1
and

J12 =013 = 021 = G23 = G31 = G32 = 0
(1) The metric in cylindrical coordinates,

ds® = g,;dz'd7’ (i,j = 1,2,3)

Since,

= ds” =Gy, (dT")? + G (dT*)* + Gy3(dT°)?
ds? = dr* +r"(df)* + d2*

(ii) The first fundamental tensor is

Jg11 912 G913 1 00
Gij = | Go1 Go2 Goz | = |0 77 0O
931 932 933 0 0 1
Since,
1 0 0
g=1g;/=10 7 0
0 0 1
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=g=r
(iii) The cofactor of g are given by,

Bi1 =712 By =1,Bs3=7r> and, By = By = Bi3= Ba3= B3 =0
_ BY

The second fundamental tensor or conjugate tensor is,g"” g

cofactor of g1 in g

gl =
g
B 2
gll_j:_2:1
g r
Bas
922__:_2
g r
B 72
QBSZﬁ__2:1
g r
and,
12 g3 20 3 81 32

Hence the second fundamental tensor in matrix form is,

o = o
_ O O

Example 3.3 : Find the matriz and component of first and second funda-

mental tensors in spherical coordinates.

Solution:
Let (zt, 2%, 23) be the cartesian coordinates and (T, To,T3) be the spherical
coordinates of a point. The spherical coordinates are given by

x = rsinf cos ¢, y = rsin#sin @, z=rcosf

So that,

l=x 2P=y, =2z and
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Let gij and g,; be the metric tensors in cartesian and spherical coordinates

respectively.

The metric in cartesian coordinates 1s given by,

ds® = da?® + dy* + dz*
ds* = (dz')? + (d2?)* + (dz®)? (3.10)

but,
ds* = gidx'dr! (i,j = 1,2,3)

ds® = gn(dacl)2 + grodxtda® 4+ gizdatda’®
+ggld:c2da:1 + ggg(dx2)2 + +gggdx2d:€3

+gg1d£€3d£131 + 932d$‘3d5132 + +933(d$‘3)3 (3.11)

Comparing (3.10) and (3.11), we have,

g11 = go2 = g33 = 1 and g12=¢g13=0o1 = g23 = g31 = 0

_ oz 9x? : .
On transformation,g 9ij = ij i 57 since,g;; is a covariant tensor of rank

two(i,j=1,2,3)

_ Oz! Ox! O0z? Ox? O0x3 023
9ij = 95— o5 + 92— 9 o + 933 97 O

Since,i,j are dummy indices,
Put i=j=1
Since,g12 = g13 = g1 = g23 = g31 = 0

Ox? N Ox? + 0x3\ 2
J11 = 911 (‘3_ g22 (9_ g33 6_

37



o 92\ 2 N @ 2 N % 2
g1 = 91 I g22 I 933 I
Since,x = rsinflsin¢, y=rsinfsing, 2z =rcosf

g_x = sin # cos ¢, @ = sin 6 sin ¢, % = cosf
r

or or
and g1 = g2 = g3z = 1

= Gy; = (sinf cos ¢)? + (sin fsin ¢)* 4 cos? §
gu =1

Put i=j=2

Since,g12 = ¢13 = g21 = 923 = g31 = 0

_ o\ 2 or2\ 2 0x3\ 2
go2 = 11 (ﬁ) + go22 (@) + 933 (@)

o 8_95 2+ @ 2+ % 2
dgi1 = gn 20 g22 90 g33 90

Since,x = rsinflsin¢, y=rsinfsing, 2z =rcosf

% = r cos f cos ¢, @ = 1 cos # sin ¢, % = —rsinf

00
and g1 = g2 = g3z = 1

= Goo = (1 cosf cos @)? + (r cosfsin ¢)* + (—rsin #)?
G =71"

Put i=j=3

Since,g12 = g13 = g21 = g23 = g31 = 0

_ oz \ 2 ox2\ > 93\ 2

933 = 911 (ﬁ) + g22 <ﬁ) + 933 (@)
g () b (22 g (22
g1 = gu Y. g22 96 g33 Y,
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Since,x = rsinflsin¢, y=rsinfsing, 2z =rcosf
0 0 0
a—z:—rsinﬁsinqb, ,a—z:rsinecosqb, a—;:
and g11 = ga2 = g33 = 1

0

= Ga3 = (—rsinfsin¢)? + (rsinfcos ¢)* + 0
G353 = r2sin’ 0

sin® 6

(i) The metric in spherical coordinates,

ds® = g,;dz'dT’ (i,j = 1,2, 3)

Since,

= ds* = Gy, (d7")’ + oo (dT*)* + G33(d7°)*
ds® = dr? + r"(df)? + r*sin’ Od¢p*

(ii) The first fundamental tensor is

911 912 913 10 0
Gij= | o1 Goo o3 | = | 0 77 0
931 932 933 0 0 r’sin®0
Since,
1 0 0

9=1g;l=10 r? 0
0 0 r%sin®6
4

= g =r*sin’ 0

(iii) The cofactor of g are given by,
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Bi1 = 1,Boy = 1", B33 = r’sin”’0 and, By = By = Bi3 = Bog = B3y =

0
The second fundamental tensor or conjugate tensor is,gij = BTM

11 cofactor of g1 in g

g
B r*sin? 6
gll = 11 = ) = 1
g r4sin® 0
99 DBay r?sin? § 1
= g  risin?f 12
g résin?@  r2sin’6

and,
PLCRRE SRS L R L

Hence the second fundamental tensor in matrix form is,

0 0
% 0
1
0 r2sin” 0

3.3 ASSOCIATED TENSOR

Definition 3.3 A tensor obtained by the process of inner product of any

tensor AE%QZ] with either of the fundamental tensor g;; or g% is called as-

sociated tensor of given tensor.

E.g : Consider a tensor A;j; and form the following inner product
g“ Aiji, = A% 9% Aiji, = A% g*F Ay = A%
All these tensors are called Associated tensor of Ajjj

ASSOCIATED VECTOR
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Consider a covariant vector 4; . Then ¢'*A; = A* is called associated
vector of A; . Consider a contravariant vector A7 . Then gjkAj = A;, is called

associated vector of A’

3.4 MAGNITUDE OF A VECTOR

The magnitude or length of contravariant vector A’ defined by,

A= VoA,

or

A2 = g”AZA]

A vector of magnitude one is called Unit vector. A vector of magnitude zero

is called zero vector or Null vector

3.5 SCALAR PRODUCT OF TWO VECTORS

Let A and B be two vectors. Their scalar product is written as A.B and
defined by,

AB = A'B
Also,
AB = A'B; = giinB] since B; = ¢;;B
AB=AB =g¢9A,B; since B =g'B,
Thus,
AA=AA =g AN = A
ie,
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3.6 ANGLE BETWEEN TWO VECTORS

Let A and B be two vectors.Then,
A.B = |A||B|cosf
AllB| /9 ATAT\/4;; BB

(Since, |A] = \/g;;A7A7 and |B| = \/g;; B'BY)

= cosf =

This is the required formula for cos@ ,
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Chapter 4

APPLICATIONS

1. Diffusion Tensor in MRI

Diffusion MRI relies on the mathematics and physical interpretations of
the geometric quantities known as tensors. Only a special case of the
general mathematical notion is relevant to imaging, which is based on
the concept of a symmetric matrix.

Diffusion itself is tensorial, but in many cases the objective is not really
about trying to study brain diffusion , but rather just trying to take
advantage of diffusion anisotropy in white matter for the purpose of
finding the orientation of the axons and the magnitude or degree of
anisotropy. Tensors have a real, physical existence in a material or tissue
so that they don’t move when the coordinate system used to describe
them is rotated. There are numerous different possible representations
of a tensor (of rank 2), but among these, this discussion focuses on the
ellipsoid because of its physical relevance to diffusion and because of its

historical significance in the development of diffusion anisotropy imaging
in MRI.

2. Multilinear subspace learning
Multilinear subspace learning is an approach to dimensionality reduc-
tion.Dimensionality reduction can be performed on a data tensor whose
observations have been vectorized and organized into a data tensor, or
whose observations are matrices that are concatenated into a data ten-
sor. Here are some examples of data tensors whose observations are

vectorized or whose observations are matrices concatenated into data
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tensor images (2D/3D), video sequences (3D/4D), and hyperspectral
cubes (3D/4D). The mapping from a high-dimensional vector space to

a set of lower dimensional vector spaces is a multilinear projection.

Hyperspectral imaging, like other spectral imaging, collects and pro-
cesses information from across the electromagnetic spectrum. The goal
of hyperspectral imaging is to obtain the spectrum for each pixel in
the image of a scene, with the purpose of finding objects, identifying

materials, or detecting processes.

. Electromagnetic tensor

In electromagnetism, the electromagnetic tensor or electromagnetic field
tensor (sometimes called the field strength tensor, Faraday tensor or
Maxwell bivector) is a mathematical object that describes the electro-
magnetic field in spacetime. The field tensor was first used after the
four-dimensional tensor formulation of special relativity was introduced

by Hermann Minkowski.

. Finite Deformation Tensor

Deformation in continuum mechanics is the transformation of a body
from a reference configuration to a current configuration. A configura-
tion is a set containing the positions of all particles of the body.

A deformation may be caused by external loads, body forces (such as
gravity or electromagnetic forces), or changes in temperature, moisture
content, or chemical reactions, etc.

Strain is a description of deformation in terms of relative displacement
of particles in the body that excludes rigid-body motions. Different
equivalent choices may be made for the expression of a strain field de-
pending on whether it is defined with respect to the initial or the final
configuration of the body and on whether the metric tensor or its dual

is considered.

44



CONCLUSION

Tensor analysis is a branch of mathematics concerned with relations or laws
that are valid regardless of the system of co-ordinates used to specify the

co-ordinates.

In this project we have studied about the different types of tensors and some
basic concepts in Tensor analysis including tensor algebra and various prop-
erties regarding the metric tensor.The purpose of this project is to provide a
brief knowledge in tensor analysis.Here, we consider mostly problems of ten-
sors of rank two.Further extension of this project can be done by including

more problems of higher rank tensors.

Tensors are important in physics as they provide a concise mathematical
framework for formulating and solving physics problems in areas such as

stress,elasticity,fluid mechanics and general relativity.
Tensors are a powerful mathematical tool that is used in many areas in engi-

neering and physics including quantum mechanics,statistical thermodynam-

ics,classical mechanics,electrodynamics,solid mechanics and fluid dynamics.
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