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INTRODUCTION

Tensor analysis is a branch of Mathematics concerned with relations or

laws that remain valid regardless of the system of co-ordinates used to spec-

ify the quantities.Tensors were invented as an extension of vectors to formalize

the manipulation of geometric entities arising in the study of mathematical

manifolds.

Tensor analysis or Tensor calculus which is an extension of vector

calculus to tensor field was developed by Gregorio Ricci-Curbastro and his

student Tullio Levi-Civita.Contrasted with the infinitesimal calculus, tensor

calculus allows presentation of physics equations in a form that is indepen-

dent of the choice of coordinates of the manifold.

Tensor is defined as an objective entity having components

that change according to a transformation law.Tensors have many applica-

tions in geometry and Physics.Tensor calculus has many real life applications

in Physics and Engineering including elasticity,continnum,electromagnetism

etc.

In creating the general theory of relativity,Albert Einstein argued that the

laws of physics must be the same no matter what co-ordinate system is

used.This led him to express those laws in terms of the tensor equations.While

tensors had been studied earlier, it was the success of Einstein’s general theory

of relativity that gave rise to the current widespread interest of mathemati-

cians and physicists in tensors and their applications.
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Chapter 1

INTRODUCTION TO TENSOR

ANALYSIS

1.1 PRELIMINARIES

Definition 1.1 n-dimensional space:

An ordered set of n variables say,x1, x2, ...xn is called the coordinates of a

point in an n dimensional space.The set of all these points together forms an

n-dimensional space,denoted by Vn

Definition 1.2 Einsteins Summation Convention:

Consider the sum of the series S = a1x
1 + a2x

2 + ...+ anx
n =

∑n
i=1 aix

i. By

using summation convention, the sigma sign is dropped and the convention

is written as∑n
i=1 aix

i = aix
i

This convention is called Einsteins Summation Convention.This can be stated

as ’If a suffix occurs twice in a term, once in the lower position and once in

the upper position then that suffix implies sum over defined range.’

Definition 1.3 Dummy index: An index that is repeated in a given term is

called a dummy suffix. It is also called Umbral or Dextral Index.
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Definition 1.4 Free index: Any index occuring only once in a given term is

called a Free index.

Definition 1.5 Kronecker Delta: The symbol δij ,called Kronecker Delta is

defined by

δij =

 1, if i = j

0, if i 6= j

It is also denoted by the symbols δijandδij

PROPERTIES:

1.If x1, x2, ..., xn are independent coordinates , then

∂xi

∂xj = 0, if i 6= j

∂xi

∂xj = 1, if i = j

This implies that ∂xi

∂xj = δij

2.δii = n

3.aijδjk = aik

4. δijδ
j
k = δik

The superscripts are used to denote the components of a contravariant tensor.

The subscripts are used to denote the components of a covariant tensor.The

components of a mixed tensor is denoted by both superscripts and subscripts.

Definition 1.6 Tensor :A Tensor is a mathematical object analogous to, but

more general than a vector, which is represented by an array of components

that are functions of the coordinates of the space.

Definition 1.7 : Tensor Analysis Tensor Analysis is the branch of Math-

ematics concerned with relations or laws that remain valid regardless of the
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system of coordinates used to specify the quantities.

Tensor Calculus is an extension of vector calculus to tensor fields. Contrasted

with the infinitesimal calculus, tensor calculus allows presentation of physics

equations in a form that is independent of the choice of coordinates of the

manifold.

Definition 1.8 Invariant:A function f(x1, x2, ..., xn) is called scalar or an

invariant if its original value does not change on the transformation of coor-

dinates from x1, x2, ..., xn to x1, x2, ...xn i.e.,

φ(x1, x2, ..., xn) = φ(x1, x2, ..., xn)

Scalar is called a tensor of rank zero.

1.2 CONTRAVARIANT AND COVARIANT VECTORS

Let (x1, x2, ..., xn)orxi be coordinates of a point in X-coordinate system and

(x1, x2, ..., xn) or xi be the coordinates of the same point in the Y-coordinate

system.

Definition 1.9 Let Ai, i = 1, 2, ..., n be n functions of the coordinates x1, x2, ..., xn

in X-coordinate system.If the quantities Ai are transformed to A
i

in Y-coordinate

system then according to the law of transformation

A
i

= ∂xi

∂xjA
j or Aj = ∂xj

∂xi
A
i

Then Ai are called components of contravariant vector.

Definition 1.10 Let Ai, i = 1, 2, ..., n be n functions of the coordinates x1, x2, ..., xn

in the X-coordinate system. If the quantities Aiare transformed to Ai in the

Y-coordinate system, then according to the law of transformation

5



Ai = ∂xj

∂xi
Aj or Aj = ∂xi

∂xjAi

Then Ai are called components of a covariant vector.

The contravariant (or covariant) vector is also called a contravariant (or

covariant) tensor of rank one.

Example 1.1 If xi be the coordinate of a point in n-dimensional space , show

that dxi are components of a contravariant vector.

Solution:

Let x1, x2, ..., xn be coordinates in X- coordinate system and x1, x2, ..., xn be

the coordinates in the Y-coordinate system.

If

dxi =
∂xi

∂x1
dx1 +

∂xi

∂x2
dx2 + ...+

∂xi

∂xn
dxn

dxi =
∂xi

∂xj
dxj

It is the law of transformation of the contravariant vector. So, dxi are

components of a contravariant vector.

Example 1.2 Show that ∂φ
∂xi is a covariant vector where φ is a scalar func-

tion.

Solution:

Let x1, x2, ..., xn be the coordinates in the X- coordinate system and x1, x2, ..., xnbe

the coordinates in the Y- coordinate system.

Consider φ(x1, x2, ..., xn) = φ(x1, x2, ..., xn)
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∂φ = ∂φ
∂x1∂x

1 + ∂φ
∂x2∂x

2 + ...+ ∂φ
∂xn∂x

n

∂φ
∂xi

= ∂φ
∂x1

∂x1

∂xi
+ ∂φ

∂x2
∂x2

∂xi
+ ...+ ∂φ

∂xn
∂xn

∂xi

∂φ
∂xi

= ∂φ
∂xj

∂xj

∂xi

or ∂φ
∂xi

= ∂xj

∂xi
∂φ
∂xj

It is the law of transformation of the components of a covariant vector. So,

∂φ
∂xi is the component of a covariant vector.

Example 1.3 :Show that the component of the tangent vector on the curve

in an n-dimensional space are components of a contravariant vector.

Solution:

Let dx1

dt ,
dx2

dt , ...,
dxn

dt be the components of a tangent vector of the given point

(x1, x2, ..., xn) i.e., dxi

dt is the component of the tangent vector in the X-coordinate

system. Let the component of the tangent vector of the point (x1, x2, ..., xn)

in the Y- coordinate system are dxi

dt .

Then x1, x2, ..., xnare functions of x1, x2, ..., xn which are functions of t.

So,

dxi

dt = ∂xi

dx1
dx1

dt + ∂xi

dx2
dx2

dt + ...+ ∂xi

dxn
dxn

dt

dxi

dt = ∂xi

dxj
dxj

dt

It is the law of transformation of the components of a contravariant vector.

So, dxi

dt is component of a contravariant vector.
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i.e., the component of tangent vector on the curve in the n-dimensional space

are the components of a contravariant vector.

Example 1.4 : In rectangular cartesian coordinates, the components of ac-

celeration vectors are (ẍ,ÿ). Find these components in polar coordinates.

Solution:

In polar coordinates x = r cos θ , y = r sin θ. This implies ,

dx = dr cos θ − (r sin θ)dθ dy = dr sin θ + (r cos θ)dθ (1.1)

By solving these equations we get.,

dr = cos θdx+ sin θdy dθ = (
−1

r
sin θ)dx+ (

1

r
cos θ)dy (1.2)

We put,

(x, y) = (x1, x2), (r, θ) = (x1, x2) (1.3)

(ẍ, ÿ) = (A1, A2), (ar, aθ) = (A
1
, A

2
) (1.4)

where ar, aθ are components of acceleration vectors in polar coordinates.

Now , from (1.2) using (1.3)and (1.4) we get

dx1 = (cos θ)dx1 + (sin θ)dx2

dx2 = (−1r sin θ)dx1 + (1r cos θ)dx2

Hence,

∂x1

∂x1
= cos θ,

∂x1

∂x2
= sin θ (1.5)
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∂x2

∂x1
= −1

r
sin θ,

∂x2

∂x2
=

1

r
cos θ (1.6)

Thus,

ar = A
1

=
∂x1

∂x1
A1 +

∂x1

∂x2
A2 = (cos θ)ẍ+ (sin θ)ÿ (1.7)

and

aθ = A
2

=
∂x2

∂x1
A1 +

∂x2

∂x2
A2 = (−1

r
sin θ)ẍ+ (

1

r
cos θ)ÿ (1.8)

From (1.1), we get

ẋ = dx
dt = (cos θ)ṙ − r(sin θ)θ̇

ẍ = (cos θ)r̈ − 2(sin θ)θ̇ṙ − r(cos θ)θ̇2 − r(sin θ)θ̈ (1.9)

ẏ = (sin θ)ṙ + r(cos θ)θ̇

ÿ = (sin θ)r̈ + 2(cos θ)θ̇ṙ − r(sin θ)θ̇2 + r(cos θ)θ̈ (1.10)

Using (1.9) and (1.10)., we get from (1.7) and (1.8) that

ar = r̈ − rθ̇2, aθ = θ̈ + 2
r ṙθ̇

Example 1.5 :The components of a covariant vector in rectangular carte-

sian systems are

A1 = y
x , A2 = x

y

Find these in polar coordinates.

Solution:
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Let the corresponding components in polar coordinates be A1, A2. Then we

can write

A1 =
∂x1

∂x1
A1 +

∂x2

∂x1
A2 (1.11)

A2 =
∂x1

∂x2
A1 +

∂x2

∂x2
A2 (1.12)

Similarly from (1.1) we get,

dx1 = dx1 cos θ − (r sin θ)dx2

dx2 = dx1 sin θ + (r cos θ)dx2

Hence.,we get

∂x1

∂x1
= cos θ, ∂x1

∂x2
= −r sin θ

∂x2

∂x1
= sin θ, ∂x2

∂x2
= r cos θ

Using these relations and (1.11) and (1.12) we get,

A1 = cos θ(yx) + sin θ(xy ) = sin θ + cos θ

A2 = r sin θ(yx) + r cos θ(xy ) = −r sin
2 θ

cos θ + r cos
2 θ

sin θ

1.3 CONTRAVARIANT TENSOR OF RANK TWO

Let Aij(i, j = 1, 2, ....n) be functions of coordinates x1, x2, ..., xn in X-coordinate

system. If the quantities Aij are transformed into Aij in the Y-coordinate

system having the coordinates as x1, x2, ..., xn ,then according to the law of

transformation
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A
ij

= ∂xi

∂xk
∂xj

∂xl
Akl

Then such Aij are called the components of contravariant tensor of rank two.

1.4 COVARIANT TENSOR OF RANK TWO

LetAij(i, j = 1, 2, ..., n)be n2 functions of coordinates x1, x2, ..., xn in X-coordinate

system. If the quantities Aij are transformed into Aij in the Y-coordinate

system having the coordinates as x1, x2, ..., xn ,then according to the law of

transformation

Aij = ∂xk

∂xi
∂xl

∂xj
Akl

Then such Aij are called the components of a covariant tensor of rank two.

1.5 MIXED TENSOR OF RANK TWO

Let Ai
j(i, j = 1, 2, ..., n) be n2 functions of the coordinates x1, x2, ..., xn in

X-coordinate system. If the quantities Ai
j are transformed into Ai

j in the Y-

coordinate system having the coordinates as x1, x2, ..., xn ,then according to

the law of transformation

Ai
j = ∂xi

∂xk
∂xl

∂xj
Ak
l

Then Ai
j are called the components of the mixed tensor of rank two.

Theorem 1.1 The Kronecker delta is a mixed tensor of rank two.

Proof:

Let X and Y be two coordinate systems. And let the component of Kronecker

delta in the X-coordinate system be δij and the component of Kronecker delta
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in the Y-coordinate system be δij , then according to the law of transforma-

tion, we can write ,

δij = ∂xi

∂xj
= ∂xi

∂xk
∂xl

∂xj
∂xk

∂xl

δij = ∂xi

∂xk
∂xl

∂xj
δkl

This shows that Kronecker δij is a mixed tensor of rank two.

1.6 HIGHER RANK TENSORS

Consider N 2 functions Aij which are defined in x1, x2, ..., xNcoordinate sys-

tem. If due to a change in coordinate system x1, x2, ..., xn, the quantitiesAij

transform according to the eqn

A
ij

=
∂xi

∂xk
∂xj

∂xm
Akm (1.13)

Then we call Aij the components of a contravariant tensor of second order.

Similarly , if the N 2 functions Aij transform according to the law

Aij =
∂xk

∂xi
∂xm

∂xj
Akm (1.14)

We call Aij the components of a covariant tensor of second order

Again, if we have N 2 functions Ai
j which transform according to the equation

A
i
j =

∂xi

∂xk
∂xm

∂xj
Ak
m (1.15)
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We call Ai
j the components of a mixed tensor of second order.

A set of N s+p quantities

Ak1k2...ks
m1m2...mp

is said to be the components of a mixed tensor of (s+p)th order, if they

transform according to the equation

A
k1k2...ks
m1m2...mp

=
∂xk1
∂xt1

...
∂xks
∂xts

∂xq1
∂xm1

...
∂xqp
∂xmp

At1t2...ts
q1q2...qp

1.7 SYMMETRIC AND SKEW SYMMETRIC TEN-

SORS

Definition 1.11 Symmetric Tensors:

A tensor is said to be symmetric with respect to two contravariant (or two

covariant) indices if its components remain unchanged on an interchange of

the two indices

Example:

1. The tensor Aij is symmetric if Aij = Aji

2. The tensor Aijk
lm is symmetric if Aijk

lm = Ajik
lm

Theorem 1.2 A symmetric tensor of rank two has only 1
2n(n+ 1) different

components in n dimensional space.

Proof:

Let Aij be a symmetric tensor of rank two , then Aij = Aji.
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The components of Aij are



A11 A12 A13 · · · A1n

A21 A22 A23 · · · A2n

A31 A32 A33 · · · A3n

...
...

... · · · ...

An1 An2 An3 · · · Ann


i.e., Aij will have n2 components . Out of these n2 components , n components

A11, A22, A33, ..., Ann are different. Thus remaining components are (n2 − n),

in which A12 = A21, A23 = A32etc due to symmetry.

So, the remaining different components are1
2(n2 − n)Hence the total number

of different components

= n+
1

2
(n2 − n) =

1

2
n(n+ 1)

Definition 1.12 Skew-symmetric Tensor:

A tensor is said to be skew-symmetric with respect to two contravariant (or

two covariant) indices if its components change sign on interchange of the

two indices

Example:

1. The tensor Aij is skew-symmetric if Aij = −Aji

2. The tensor Aijk
lm is skw-symmetric if Aijk

lm = −Ajik
lm

Theorem 1.3 A skew-symmetric tensor of rank two has only 1
2n(n− 1) dif-

ferent non zero components .

14



Proof:

Let Aij be a skew-symmetric tensor of rank two , then Aij = −Aji.

The components of Aij are



0 A12 A13 · · · A1n

A21 0 A23 · · · A2n

A31 A32 0 · · · A3n

...
...

... · · · ...

An1 An2 An3 · · · 0


[since, Aii = −Aii ⇒ 2Aii = 0⇒ Aii = 0⇒ A11 = A22 = ... = Ann = 0] i.e.,

Aij will have n2 components . Out of these n2 components , n components

A11, A22, A33, ..., Ann are zero. Thus remaining components are (n2 − n), in

which A12 = −A21, A23 = −A32etc due to skew-symmetry.

So, the remaining different components are1
2(n2 − n)Hence the total number

of different non-zero components

=
1

2
n(n− 1)

Theorem 1.4 A covariant or contravariant tensor of rank two, say, Aijcan

always be written as a sum of a symmetric and a skew symmetric tensor.

Proof:

Consider a covariant tensor Aij . We can write Aij as

Aij =
1

2
(Aij + Aji) +

1

2
(Aij − Aji)

Aij = Sij + Tij,

where

Sij =
1

2
(Aij + Aji)

and

Tij =
1

2
(Aij − Aji)

15



Now

, Sji =
1

2
(Aji + Aij) ;Sji = Sij

So Sij is symmetric tensor.

and

Tij =
1

2
(Aij − Aji

Tji =
1

2
(Aji − Aij)

= −1

2
(Aij − Aji)

Tji = −Tij or

Tij = −Tji

So, Tij is skew symmetric tensor.
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Chapter 2

TENSOR ALGEBRA

2.1 ADDITION AND SUBTRACTION OF TENSORS

Two tensors are said to be of same type if they have same number of con-

travariant and covariant indices.Thus Ai
jk and Bi

jk are same type of ten-

sors.Such tensors can be added and subtracted to produce a single tensor.Hence

the sum and diffrence of the tensors Ai
jk and Bi

jk are respectively the tensors

C i
jk = Ai

jk +Bi
jk

Di
jk = Ai

jk −Bi
jk

Theorem 2.1 If Aij
k and Blm

n are tensors then,their sum and difference are

tensors of the same rank and type.

proof:

Since Ai
jk and Bi

jk are tensors , then,according to the law of transformation,

A
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Apq
r

and

B
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Bpq
r

Then,

A
ij
k ±B

ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
(Apq

r ± Bpq
r )

17



If

A
ij
k ±B

ij
k = C

ij
k

(Apq
r ± Bpq

r ) = Cpq
r

So,

C
ij
k =

∂xi

∂xp
∂xj

∂xq
∂xr

∂xk
Cpq
r

This shows that C ij
k is a tensor of same rank and type as that of Aij

k and Bij
k

Theorem 2.2 The sum(or difference) of two tensors which have the same

number of covariant and the same contravariant indices is again a tensor of

the same rank and type as the given tensors.

Proof:

Consider the two tensors Ai1i2...ir
j1j2...js

and Bi1i2...ir
j1j2...js

of the same rank and type.

Then by the law of transformation,

A
i1i2...ir
j1j2...js

=
∂xi1

∂xp1
∂xi2

∂xp2
...
∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...
∂xqs

∂xjs
Ap1p2...pr
q1q2...qs

and ,

B
i1i2...ir
j1j2...js

=
∂xi1

∂xp1
∂xi2

∂xp2
...
∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...
∂xqs

∂xjs
Bp1p2...pr
q1q2...qs

.Then ,

A
i1i2...ir
j1j2...js

±Bi1i2...ir
j1j2...js

=
∂xi1

∂xp1
∂xi2

∂xp2
...
∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...
∂xqs

∂xjs
(Ap1p2...pr

q1q2...qs
± Bp1p2...pr

q1q2...qs
)

If.,

A
i1i2...ir
j1j2...js

±Bi1i2...ir
j1j2...js

= C
i1i2...ir
j1j2...js

and

Ap1p2...pr
q1q2...qs

±Bp1p2...pr
q1q2...qs
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So.,

C
i1i2...ir
j1j2...js

=
∂xi1

∂xp1
∂xi2

∂xp2
...
∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...
∂xqs

∂xjs
Cp1p2...pr
q1q2...qs

It is the law of transformation of a mixed tensor of rank r+s

So, C
i1i2...ir
j1j2...js

is a mixed tensor of rank r+s or of type (r,s).

2.2 MULTIPLICATION OF TENSORS

Definition 2.1 Outerproduct:The outer product of two tensors denoted by

Bij
klm and Cqrs

uvwx is defined as

Aijqrs
klmuvwx = Bij

klmC
qrs
uvwx

NOTE:

The division of a tensor of rank greater than zero by another tensor of rank

greater than zero is not defined.

Theorem 2.3 The multiplication of two tensors is a tensor whose rank is

the sum of the ranks of the two tensors.

Proof:

Consider two tensors Ai1i2....ir
j1j2...js

, Bi1i2....ir
j1j2...js

Then by the law of transformation,

A
i1i2...ir
j1j2...js

= ∂xi1
∂xp1

∂xi2
∂xp2 ...

∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...∂x

qs

∂xjs
Ap1p2...pr
q1q2...qs

and,

B
k1k2...km
l1l2...ln

= ∂xk1
∂xα1

∂xk2
∂xα2 ...

∂xkm

∂xαm
∂xβ1

∂xl1
∂xβ2

∂xl2
...∂x

βn

∂xln
Bα1α2...αm
β1β2...βn
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Then their product is,

A
i1i2...ir
j1j2...js

B
k1k2...km
l1l2...ln

=

∂xi1

∂xp1
∂xi2

∂xp2
...
∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...
∂xqs

∂xjs
∂xk1

∂xα1

∂xk2

∂xα2
...
∂xkm

∂xαm
∂xβ1

∂xl1
∂xβ2

∂xl2
...
∂xβn

∂xln
Ap1p2...pr
q1q2...qs

Bα1α2...αm
β1β2...βn

If

C
i1i2...irk1k2..km
j1j2...jsl1l2..ln

= A
i1i2...ir
j1j2...js

B
k1k2...km
l1l2...ln

and,

Cp1p2...prα1α2..αm
q1q2...qsβ1β2..βn

= Ap1p2...pr
q1q2...qs

Bα1α2...αm
β1β2...βn

So,

C
i1i2...irk1k2..km
j1j2...jsl1l2..ln

= ∂xi1
∂xp1

∂xi2
∂xp2 ...

∂xir

∂xpr
∂xq1

∂xj1
∂xq2

∂xj2
...∂x

qs

∂xjs
∂xk1
∂xα1

∂xk2
∂xα2 ...

∂xkm

∂xαm
∂xβ1

∂xl1
∂xβ2

∂xl2
...∂x

βn

∂xln
Cp1p2...prα1α2..αm
q1q2...qsβ1β2..βn

This is law of transformation of a mixed tensor of rank r + m + s + n.

So, C
i1i2...irk1k2..km
j1j2...jsl1l2..ln

is a mixed tensor of rank r + m + s + n or of type (r + m,

s + n). Such product is called outer product or open proudct of two tensors.

Example 2.1 :

If Ai and Bj are the components of a contravariant and covariant tensors of

rank one, then prove that AiBj are components of a mixed tensor of rank two.

Solution:

As Ai is contravariant tensor of rank one and Bj is covariant tensor of rank

one.

Then according to the law of transformation,

A
i

=
∂xi

∂xk
Ak (2.1)
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Bj =
∂xl

∂xj
Bl (2.2)

Multiply (2.1) and (2.2), we get,

A
i
Bj =

∂xi

∂xk
∂xl

∂xj
AkBl

This is law of transformation of tensor of rank two. So, AiBj are mixed tensor

of rank two.

Example 2.2 :

Show that the product of two tensors Ai
j and Bkl

m is a tensor of rank five.

Solution:

Since,Ai
j and Bkl

m are tensors,

by law of transformation,

A
i
j =

∂xi

∂xp
∂xq

∂xj
Ap
q

and

B
kl
m =

∂xk

∂xr
∂xl

∂xs
∂xt

∂xm
Brs
t

Multipying these,we get,

A
i
jB

kl
m =

∂xi

∂xp
∂xq

∂xj
∂xk

∂xr
∂xl

∂xs
∂xt

∂xm
Ap
qB

rs
t

This is law of transformation of tensor of rank five. So, Ai
jB

kl
m is a tensor

of rank five.

2.3 CONTRACTION OF A TENSOR

Definition 2.2 The process of getting a tensor of lower order (reduced by 2)

by putting a covariant index equal to a contravariant index and performing
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the summation indicated is known as Contraction.

In other words, if in a tensor we put one contravariant and one covariant

indices equal, the process is called contraction of a tensor.

Example 2.3 : Consider a mixed tensor Aijk
lm of order five

by law of transformation,

A
ijk
lm =

∂xi

∂xp
∂xj

∂xq
∂xk

∂xr
∂xs

∂xl
∂xt

∂xm
Apqr
st

Put the covariant index l = contravariant index i, so that,

A
ijk
lm =

∂xi

∂xp
∂xj

∂xq
∂xk

∂xr
∂xs

∂xi
∂xt

∂xm
Apqr
st

=
∂xj

∂xq
∂xk

∂xr
∂xs

∂xp
∂xt

∂xm
Apqr
st

=
∂xj

∂xq
∂xk

∂xr
∂xt

∂xm
δspA

pqr
st

(Since,∂x
s

∂xp = δsp)

A
ijk
lm =

∂xj

∂xq
∂xk

∂xr
∂xt

∂xm
Apqr
pt

This is law of transformation of tensor of rank 3. So, Aijk
lm is a tensor of rank

3 and type (1, 2) while Aijk
lm is a tensor of rank 5 and type (2, 3).

i.e, that contraction reduces rank of tensor by two.

2.4 INNER PRODUCT OF TWO TENSORS

Definition 2.3 Consider the tensors Aij
k and Bl

mn . First form their outer

product Aij
k B

l
mn and contract this by putting l = k then the resultant is also a

tensor, which is called the inner product of the given tensors.

Hence the inner product of two tensors is obtained by first taking outer product

and then contracting it.

Example 2.4 : If Ai and Bi are the components of a contravariant and

covariant tensors of rank are respectively then prove that AiBi is scalar or

22



invariant.

Solution :

Since,Ai and Bi are the components of a contravariant and covariant tensors

of rank one respectively,

then by law of transformation,

A
i

=
∂xi

∂xp
Ap

and

Bi =
∂xq

∂xi
Bq

Multiplying these,we get,

A
i
Bi =

∂xi

∂xp
∂xq

∂xp
ApBq

=
∂xq

∂xp
ApBq

= δqpA
pBq

(Since,∂x
q

∂xp = δqp)

= ApBp

i.e,

A
i
Bi = ApBp

This shows that AiBi is scalar or Invariant.

Example 2.5 : If Ai
jis mixed tensor of rank 2 and Bkl

m is mixed tensor of

rank 3,Prove that is a mixed Ai
jB

jl
m tensor of rank 3.

Solution :

As Ai
jis mixed tensor of rank 2 and Bkl

m is mixed tensor of rank 3,

by law of transformation,

A
i
j =

∂xi

∂xp
∂xq

∂xj
Ap
q

and

B
kl
m =

∂xk

∂xr
∂xl

∂xs
∂xt

∂xm
Brs
t

put k=j,then,

B
jl
m =

∂xj

∂xr
∂xl

∂xs
∂xt

∂xm
Brs
t

23



Then,

A
i
jB

jl
m =

∂xi

∂xp
∂xq

∂xj
∂xj

∂xr
∂xl

∂xs
∂xt

∂xm
Ap
qB

rs
t

=
∂xi

∂xp
∂xl

∂xs
∂xt

∂xm
δqrA

p
qB

rs
t

(Since,∂x
q

∂xj
∂xj

∂xr = ∂xq

∂xr = δqr)

i.e,

A
i
jB

jl
m =

∂xi

∂xp
∂xl

∂xs
∂xt

∂xm
Ap
qB

qs
t

(Since,δqrB
rs
t = Bqs

t )

This is the law of transformation of a mixed tensor of rank three. Hence

Ai
jB

jl
m is a mixed tensor of rank three.

2.5 QUOTIENT LAW

Using this law, we can test whether a given quantity is a tensor or not. Sup-

pose that a quantity A is given and we have to check whether A is a tensor

or not.

For this, we take the inner product of A with an arbitrary tensor, if this inner

product is a tensor then A is also a tensor.

STATEMENT:

If the inner product of a set of functions with an arbitrary tensor, is a

tensor, then these set of functions are the components of a tensor.

Example 2.6 :

Show that the expression A(i, j, k) is a covariant tensor of rank three if

A(i, j, k)Bk is covariant tensor of rank two and Bk is contravariant vector

Solution:
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Let X and Y be two coordinate systems.

As given A(i, j, k)Bk is covariant tensor of rank two then,

A(i, j, k)B
k

=
∂xp

∂xi
∂xq

∂xj
A(p, q, r)Br (2.3)

Since

Bk is a contravariant vector,then,

B
k

=
∂xk

∂xr
Br

or

Br =
∂xr

∂xk
B
k

From (2.3),

A(i, j, k)B
k

=
∂xp

∂xi
∂xq

∂xj
A(p, q, r)

∂xr

∂xk
B
k

A(i, j, k)B
k

=
∂xp

∂xi
∂xq

∂xj
∂xr

∂xk
A(p, q, r)B

k

A(i, j, k) =
∂xp

∂xi
∂xq

∂xj
∂xr

∂xk
A(p, q, r)

i.e,A(i, j, k) is covariant tensor of rank three.

Example 2.7 :

If A(i, j, k)AiBjCk is a scalar for arbitrary vectors Ai, B
j, Ck. Show that

A(i, j, k) is a tensor of type (1, 2).

Solution:

Let X and Y be two coordinate systems. As given is scalar. Then A(i, j, k)AiBjCk

is a scalar,

A(i, j, k)A
i
B
j
Ck = A(p, q, r)ApBqCr (2.4)

Since

Ai, Bj and Ck are vectors ,then,

A
i

=
∂xi

∂xp
Ap or Ap =

∂xp

∂xi
A
i
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B
j

=
∂xj

∂xq
Bq or orBq =

∂xq

∂xj
B
j

C
k

=
∂xk

∂xr
Cr or Cr ==

∂xq

∂xj
B
j

Substituting in (2.4)

A(i, j, k)A
i
B
j
Ck = A(p, q, r)

∂xp

∂xi
∂xq

∂xj
∂xr

∂xk
B
j
A
i
B
j
Ck

A(i, j, k) =
∂xp

∂xi
∂xq

∂xj
∂xr

∂xk
A(p, q, r)

i.e,A(i, j, k) is tensor of type (1, 2).

2.6 CONJUGATE (RECIPROCAL ) SYMMETRIC TEN-

SOR

Consider a covariant symmetric tensor Aij of rank two. Let ’d’ denote the

determinant |Aij|with the elements Aij.

i.e, d = |Aij| and d 6= 0.

Now,define Aij by,

Aij =
CofactorofAij

d

Aij is a contravariant symmetric tensor of rank two which is called conjugate

(or Reciprocal) tensor of Aij.

Theorem 2.4 If Bij is the cofactor of Aij in the determinant d = |Aij| 6=
0and Aij defined as,

Aij =
Bij

d

Then,AijA
kj = δki

Proof:

From the properties of the determinants, we have two results
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1. AijBij = d

⇒ Aij
Bij
d = 1

⇒ AijA
ij = 1 (Since, Aij = d

Bij
)

2. AijBkj = 0

⇒ Aij
Bkj
d = 0 ( since d 6= 0)

⇒ AijA
kj = 0 (if i 6= k)

From 1 and 2,

AijA
kj =

{
1 if i = k

0 if i 6= k

i.e, AijA
kj = δki
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Chapter 3

METRIC TENSOR &

REIMANNIAN METRIC

3.1 THE METRIC TENSOR

Definition 3.1 In rectangular cartesian coordinates, the distance between

two neighbouring point are (x, y, z) and (x + dx, y + dy, z + dz)is given by

ds2 = dx2 + dy2 + dz2 .

In n-dimensional space, Riemann defined the distance ds between two

neighbouring points xi and xi + dxi(i = 1, 2, ...n) by quadratic differential

form,

ds2 = g11(dx
1)2 + g12dx

1dx2 + · · ·+ g1ndx
1dxn

+g21dx
2dx1 + g22(dx

2)2 + · · ·+ g2ndx
2dxn

+...............................................................

+gn1dx
ndx1 + gn2dx

ndx2 + · · ·+ gnn(dx
n)2

i.e,

ds2 = gijdx
idxj(i, j = 1, 2, ...., n) (3.1)

,using summation convention.

Where gij are the functions of the coordinates xisuch that

g = |gij| 6= 0
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The quadratic differential form (3.1) is called the Riemannian Metric or Met-

ric or line element for n-dimensional space and such n-dimensional space is

called Riemannian space and denoted by Vn and gij is called Metric Tensor

or Fundamental tensor.

The geometry based on Riemannian Metric is called the Riemannian Geom-

etry.

Theorem 3.1 The Metric tensor gij is a covariant symmetric tensor of rank

two.

Proof :

The metric is given by,

ds2 = gijdx
idxj(i, j = 1, 2, ...., n) (3.2)

Let xi be the coordinates in X-coordinate system and xi be the coordinates

in Y-coordinate system. Then metric ds2 = gijdx
idxj transforms to ds2 =

gijdx
idxj

Since distance being scalar quantity,

ds2 = gijdx
idxj = gijdx

idxj (3.3)

The theorem will be proved in three steps.

1. To show dxj is a contravariant vector

If ,xi = xi(x1x2, ...xn),

dxi =
∂xi

∂x1
dx1 +

∂xi

∂x2
dx2 + ...+

∂xi

∂xn
dxn

dxi =
∂xi

∂xk
dxk

(3.5)

It is law of transformation of contravariant vector. So, dxi is contravari-

ant vector.
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2. To show that gij is a covariant tensor of rank two.

Since,

dxi =
∂xi

∂xk
dxk and dxj =

∂xj

∂xl
dxl

from equation(3.3)

gijdx
idxj = gij

∂xi

∂xk
dxk

∂xj

∂xl
dxl

gijdx
idxj = gij

∂xi

∂xk
∂xj

∂xl
dxkdxl

gkldx
kdxl = gij

∂xi

∂xk
∂xj

∂xl
dxkdxl

Since, gijdx
idxj = gkldx

kdxl (i,j are dummy indices)[
gkl − gij

∂xi

∂xk
∂xj

∂xl

]
dxkdxl = 0

gkl − gij
∂xi

∂xk
∂xj

∂xl
= 0

as dxk and dxl are arbitrary.

gkl = gij
∂xi

∂xk
∂xj

∂xl

or,

gij = gkl
∂xk

∂xi
∂xl

∂xj

So, gij is covariant tensor of rank two.

3. To show that gij is symmetric. Then gij can be written as,

gij =
1

2
(gij + gji) +

1

2
(gij − gji)

gij = Aij +Bij

where

Aij =
1

2
(gij + gji) = symmetric

Bij =
1

2
(gij − gji) = skew − symmetric

Now

gijdx
idxj = (Aij +Bij)dx

idxj
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(gij − Aij)dx
idxj = Bijdx

idxj (3.6)

Interchanging the dummy indices in Bijdx
idxj,we have,

Bijdx
idxj = Bjidx

idxj

Bijdx
idxj = −Bijdx

idxj

Since Bij is skew-symmetric,i.e, Bij=-Bij

Bijdx
idxj +Bijdx

idxj = 0

2Bijdx
idxj = 0

Bijdx
idxj = 0

So from(3.6),

(gij − Aij)dx
idxj = 0

⇒ gij = Aij

as dxi, dxj are arbitrary.

So, gijis symmetric since Aij is symmetric. Hence gij is a covariant

symmetric tensor of rank two. This is called fundamental Covariant Tensor.

Example 3.1 : Show that gijdx
idxj is an invariant.

Proof:

Let xi be coordinates of a point in X-coordinate system and xi be coordi-

nates of a same point in Y-coordinate system.

Since gij is a Covariant tensor of rank two.

Then,

gij = gkl
∂xk

∂xi
∂xl

∂xj

gij − gkl
∂xk

∂xi
∂xl

∂xj
= 0[

gij − gkl
∂xk

∂xi
∂xl

∂xj

]
dxidxj = 0
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gijdx
idxj = gkl

∂xk

∂xi
∂xl

∂xj
dxidxj

gijdx
idxj = gkl

∂xk

∂xi
dxi

∂xl

∂xj
dxj

i.e,

gijdx
idxj = gkldx

kdxl

So, gijdx
idxjis an ivariant.

3.2 CONJUGATE METRIC TENSOR

Definition 3.2 The conjugate Metric Tensor to gij , which is written as gij

, is defined by

gij =
Bij

g

whereBij is the cofactor of gij in the determinant = g = |gij| 6= 0

By theorem (2.4),

AijA
kj = δki

so,

gijg
kj = δki

NOTE:

(i) Tensors gij and gij are Metric Tensor or Fundamental Tensors.

(ii) gij is called first fundamental Tensor and gij second fundamental Tensors

Example 3.2 :

Find the Metric and component of first and second fundamental tensor is

cylindrical coordinates.

Solution:

Let (x1, x2, x3) be the Cartesian coordinates and (x1, x2, x3)be the cylindri-

cal coordinates of a point. The cylindrical coordinates are given by,

x = r cos θ, y = r sin θ, z = z
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So that,

x1 = x, x2 = y, x3 = z and x1 = r, x2 = θ, x3 = z (3.7)

Let gij and gij be the metric tensors in Cartesian coordinates and cylin-

drical coordinates respectively.

The metric in Cartesian coordinate is given by,

ds2 = dx2 + dy2 + dz2

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (3.8)

but,

ds2 = gijdx
idxj(i, j = 1, 2, 3)

ds2 = g11(dx
1)2 + g12dx

1dx2 + g13dx
1dx3

+g21dx
2dx1 + g22(dx

2)2 + +g23dx
2dx3

+g31dx
3dx1 + g32dx

3dx2 + +g33(dx
3)3 (3.9)

Comparing (3.8) and (3.9), we have,

g11 = g22 = g33 = 1 and g12 = g13 = g21 = g23 = g31 = 0

On transformation,gij = gij
∂xi

∂xi
∂xj

∂xj
, since,gij is a covariant tensor of rank

two(i,j=1,2,3)

gij = g11
∂x1

∂xi
∂x1

∂xj
+ g22

∂x2

∂xi
∂x2

∂xj
+ g33

∂x3

∂xi
∂x3

∂xj

Since,i,j are dummy indices,

Put i=j=1
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Since,g12 = g13 = g21 = g23 = g31 = 0

g11 = g11

(
∂x1

∂x1

)2

+ g22

(
∂x2

∂x1

)2

+ g33

(
∂x3

∂x1

)2

g11 = g11

(
∂x

∂r

)2

+ g22

(
∂y

∂r

)2

+ g33

(
∂z

∂r

)2

Since,x = r cos θ, y = r sin θ, z = z

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂z

∂r
= 0

and g11 = g22 = g33 = 1

⇒ g11 = cos2 θ + sin2 θ + 0

g11 = 1

Put i=j=2

Since,g12 = g13 = g21 = g23 = g31 = 0

g22 = g11

(
∂x1

∂x2

)2

+ g22

(
∂x2

∂x2

)2

+ g33

(
∂x3

∂x2

)2

g11 = g11

(
∂x

∂θ

)2

+ g22

(
∂y

∂θ

)2

+ g33

(
∂z

∂θ

)2

Since,x = r cos θ, y = r sin θ, z = z

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ,

∂z

∂θ
= 0

and g11 = g22 = g33 = 1

⇒ g22 = (−r sin θ)2 + (r cos θ)2 + 0

g22 = rr sin2 θ + rr cos2 θ

g22 = rr

Put i=j=3
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Since,g12 = g13 = g21 = g23 = g31 = 0

g33 = g11

(
∂x1

∂x3

)2

+ g22

(
∂x2

∂x3

)2

+ g33

(
∂x3

∂x3

)2

g11 = g11

(
∂x

∂z

)2

+ g22

(
∂y

∂z

)2

+ g33

(
∂z

∂z

)2

Since,x = r cos θ, y = r sin θ, z = z

∂x

∂z
= 0,

∂y

∂z
= 0,

∂z

∂z
= 1

and g11 = g22 = g33 = 1

⇒ g33 = 1

So,g11 = 1, g22 = r2, g33 = 1

and

g12 = g13 = g21 = g23 = g31 = g32 = 0

(i) The metric in cylindrical coordinates,

ds2 = gijdx
idxj(i, j = 1, 2, 3)

Since,

g12 = g13 = g21 = g23 = g31 = g32 = 0

⇒ ds2 = g11(dx
1)2 + g22(dx

2)2 + g33(dx
3)2

ds2 = dr2 + rr(dθ)2 + dz2

(ii) The first fundamental tensor is

gij =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 =


1 0 0

0 r2 0

0 0 1


Since,

g = |gij| =

∣∣∣∣∣∣∣∣
1 0 0

0 r2 0

0 0 1

∣∣∣∣∣∣∣∣
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⇒ g = r2

(iii) The cofactor of g are given by,

B11 = r2, B22 = 1, B33 = r2 and, B12 = B21 = B13 = B23 = B32 = 0

The second fundamental tensor or conjugate tensor is,gij = Bij

g

g11 =
cofactor of g11 in g

g

g11 =
B11

g
=
r2

r2
= 1

g22 =
B22

g
=

1

r2

g33 =
B33

g
=
r2

r2
= 1

and,

g12 = g13 = g21 = g23 = g31 = g32 = 0

Hence the second fundamental tensor in matrix form is,
1 0 0

0 1
r2 0

0 0 1


Example 3.3 : Find the matrix and component of first and second funda-

mental tensors in spherical coordinates.

Solution:

Let (x1, x2, x3) be the cartesian coordinates and (x1, x2, x3) be the spherical

coordinates of a point. The spherical coordinates are given by

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

So that,

x1 = x, x2 = y, x3 = z and x1 = r, x2 = θ, x3 = φ
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Let gij and gij be the metric tensors in cartesian and spherical coordinates

respectively.

The metric in cartesian coordinates is given by,

ds2 = dx2 + dy2 + dz2

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (3.10)

but,

ds2 = gijdx
idxj(i, j = 1, 2, 3)

ds2 = g11(dx
1)2 + g12dx

1dx2 + g13dx
1dx3

+g21dx
2dx1 + g22(dx

2)2 + +g23dx
2dx3

+g31dx
3dx1 + g32dx

3dx2 + +g33(dx
3)3 (3.11)

Comparing (3.10) and (3.11), we have,

g11 = g22 = g33 = 1 and g12 = g13 = g21 = g23 = g31 = 0

On transformation,gij = gij
∂xi

∂xi
∂xj

∂xj
, since,gij is a covariant tensor of rank

two(i,j=1,2,3)

gij = g11
∂x1

∂xi
∂x1

∂xj
+ g22

∂x2

∂xi
∂x2

∂xj
+ g33

∂x3

∂xi
∂x3

∂xj

Since,i,j are dummy indices,

Put i=j=1

Since,g12 = g13 = g21 = g23 = g31 = 0

g11 = g11

(
∂x1

∂x1

)2

+ g22

(
∂x2

∂x1

)2

+ g33

(
∂x3

∂x1

)2
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g11 = g11

(
∂x

∂r

)2

+ g22

(
∂y

∂r

)2

+ g33

(
∂z

∂r

)2

Since,x = r sin θ sinφ, y = r sin θ sinφ, z = r cos θ

∂x

∂r
= sin θ cosφ,

∂y

∂r
= sin θ sinφ,

∂z

∂r
= cos θ

and g11 = g22 = g33 = 1

⇒ g11 = (sin θ cosφ)2 + (sin θ sinφ)2 + cos2 θ

g11 = 1

Put i=j=2

Since,g12 = g13 = g21 = g23 = g31 = 0

g22 = g11

(
∂x1

∂x2

)2

+ g22

(
∂x2

∂x2

)2

+ g33

(
∂x3

∂x2

)2

g11 = g11

(
∂x

∂θ

)2

+ g22

(
∂y

∂θ

)2

+ g33

(
∂z

∂θ

)2

Since,x = r sin θ sinφ, y = r sin θ sinφ, z = r cos θ

∂x

∂θ
= r cos θ cosφ,

∂y

∂θ
= r cos θ sinφ,

∂z

∂θ
= −r sin θ

and g11 = g22 = g33 = 1

⇒ g22 = (r cos θ cosφ)2 + (r cos θ sinφ)2 + (−r sin θ)2

g22 = rr

Put i=j=3

Since,g12 = g13 = g21 = g23 = g31 = 0

g33 = g11

(
∂x1

∂x3

)2

+ g22

(
∂x2

∂x3

)2

+ g33

(
∂x3

∂x3

)2

g11 = g11

(
∂x

∂φ

)2

+ g22

(
∂y

∂φ

)2

+ g33

(
∂z

∂φ

)2
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Since,x = r sin θ sinφ, y = r sin θ sinφ, z = r cos θ

∂x

∂φ
= −r sin θ sinφ, ,

∂y

∂φ
= r sin θ cosφ,

∂z

∂φ
= 0

and g11 = g22 = g33 = 1

⇒ g33 = (−r sin θ sinφ)2 + (r sin θ cosφ)2 + 0

g33 = r2 sin2 θ

So,g11 = 1, g22 = r2, g33 = r2 sin2 θ

and

g12 = g13 = g21 = g23 = g31 = g32 = 0

(i) The metric in spherical coordinates,

ds2 = gijdx
idxj(i, j = 1, 2, 3)

Since,

g12 = g13 = g21 = g23 = g31 = g32 = 0

⇒ ds2 = g11(dx
1)2 + g22(dx

2)2 + g33(dx
3)2

ds2 = dr2 + rr(dθ)2 + r2 sin2 θdφ2

(ii) The first fundamental tensor is

gij =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 =


1 0 0

0 r2 0

0 0 r2 sin2 θ


Since,

g = |gij| =

∣∣∣∣∣∣∣∣
1 0 0

0 r2 0

0 0 r2 sin2 θ

∣∣∣∣∣∣∣∣
⇒ g = r4 sin2 θ

(iii) The cofactor of g are given by,
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B11 = 1, B22 = rr, B33 = r2 sin2 θ and, B12 = B21 = B13 = B23 = B32 =

0

The second fundamental tensor or conjugate tensor is,gij = Bij

g

g11 =
cofactor of g11 in g

g

g11 =
B11

g
=
r4 sin2 θ

r4 sin2 θ
= 1

g22 =
B22

g
=
r2 sin2 θ

r4 sin2 θ
=

1

r2

g33 =
B33

g
=

r2

r4 sin2 θ
=

1

r2 sin2 θ

and,

g12 = g13 = g21 = g23 = g31 = g32 = 0

Hence the second fundamental tensor in matrix form is,
0 0 0

0 1
r2 0

0 0 1
r2 sin2 θ


3.3 ASSOCIATED TENSOR

Definition 3.3 A tensor obtained by the process of inner product of any

tensor Ai1i2,...ir
j1,j2,...,js

with either of the fundamental tensor gij or gij is called as-

sociated tensor of given tensor.

E.g : Consider a tensor Aijk and form the following inner product

gαiAijk = Aα
jk; gαjAijk = Aα

ik; gαkAijk = Aα
ij

All these tensors are called Associated tensor of Aijk

ASSOCIATED VECTOR
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Consider a covariant vector Ai . Then gikAi = Ak is called associated

vector of Ai . Consider a contravariant vector Aj . Then gjkA
j = Ak is called

associated vector of Aj

3.4 MAGNITUDE OF A VECTOR

The magnitude or length of contravariant vector Ai defined by,

A =
√
gijAiAj

or

A2 = gijAiAj

A vector of magnitude one is called Unit vector. A vector of magnitude zero

is called zero vector or Null vector

3.5 SCALAR PRODUCT OF TWO VECTORS

Let ~A and ~B be two vectors. Their scalar product is written as ~A. ~B and

defined by,

~A. ~B = AiBi

Also,

~A. ~B = AiBi = gijA
iBj since Bi = gijB

j

~A. ~B = AiB
i = gijAiBj since Bi = gijBj

Thus,

~A. ~A = AiAi = gijA
iAj = A2

i.e,

A = | ~A| =
√
gijAiAj
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3.6 ANGLE BETWEEN TWO VECTORS

Let A and B be two vectors.Then,

~A. ~B = | ~A|| ~B| cos θ

⇒ cos θ =
~A. ~B

| ~A|| ~B|
=

gijA
iBj√

gijAiAj
√
gijBiBj

(Since, | ~A| =
√
gijAiAj and | ~B| =

√
gijBiBj)

This is the required formula for cos θ ,
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Chapter 4

APPLICATIONS

1. Diffusion Tensor in MRI

Diffusion MRI relies on the mathematics and physical interpretations of

the geometric quantities known as tensors. Only a special case of the

general mathematical notion is relevant to imaging, which is based on

the concept of a symmetric matrix.

Diffusion itself is tensorial, but in many cases the objective is not really

about trying to study brain diffusion , but rather just trying to take

advantage of diffusion anisotropy in white matter for the purpose of

finding the orientation of the axons and the magnitude or degree of

anisotropy. Tensors have a real, physical existence in a material or tissue

so that they don’t move when the coordinate system used to describe

them is rotated. There are numerous different possible representations

of a tensor (of rank 2), but among these, this discussion focuses on the

ellipsoid because of its physical relevance to diffusion and because of its

historical significance in the development of diffusion anisotropy imaging

in MRI.

2. Multilinear subspace learning

Multilinear subspace learning is an approach to dimensionality reduc-

tion.Dimensionality reduction can be performed on a data tensor whose

observations have been vectorized and organized into a data tensor, or

whose observations are matrices that are concatenated into a data ten-

sor. Here are some examples of data tensors whose observations are

vectorized or whose observations are matrices concatenated into data
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tensor images (2D/3D), video sequences (3D/4D), and hyperspectral

cubes (3D/4D). The mapping from a high-dimensional vector space to

a set of lower dimensional vector spaces is a multilinear projection.

Hyperspectral imaging, like other spectral imaging, collects and pro-

cesses information from across the electromagnetic spectrum. The goal

of hyperspectral imaging is to obtain the spectrum for each pixel in

the image of a scene, with the purpose of finding objects, identifying

materials, or detecting processes.

3. Electromagnetic tensor

In electromagnetism, the electromagnetic tensor or electromagnetic field

tensor (sometimes called the field strength tensor, Faraday tensor or

Maxwell bivector) is a mathematical object that describes the electro-

magnetic field in spacetime. The field tensor was first used after the

four-dimensional tensor formulation of special relativity was introduced

by Hermann Minkowski.

4. Finite Deformation Tensor

Deformation in continuum mechanics is the transformation of a body

from a reference configuration to a current configuration. A configura-

tion is a set containing the positions of all particles of the body.

A deformation may be caused by external loads, body forces (such as

gravity or electromagnetic forces), or changes in temperature, moisture

content, or chemical reactions, etc.

Strain is a description of deformation in terms of relative displacement

of particles in the body that excludes rigid-body motions. Different

equivalent choices may be made for the expression of a strain field de-

pending on whether it is defined with respect to the initial or the final

configuration of the body and on whether the metric tensor or its dual

is considered.
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CONCLUSION

Tensor analysis is a branch of mathematics concerned with relations or laws

that are valid regardless of the system of co-ordinates used to specify the

co-ordinates.

In this project we have studied about the different types of tensors and some

basic concepts in Tensor analysis including tensor algebra and various prop-

erties regarding the metric tensor.The purpose of this project is to provide a

brief knowledge in tensor analysis.Here, we consider mostly problems of ten-

sors of rank two.Further extension of this project can be done by including

more problems of higher rank tensors.

Tensors are important in physics as they provide a concise mathematical

framework for formulating and solving physics problems in areas such as

stress,elasticity,fluid mechanics and general relativity.

Tensors are a powerful mathematical tool that is used in many areas in engi-

neering and physics including quantum mechanics,statistical thermodynam-

ics,classical mechanics,electrodynamics,solid mechanics and fluid dynamics.
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