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INTRODUCTION

Technique from graph theory and linear algebra assist in studying the
structure and enumeration of graphs. Eigen values of graphs mostly related
to spectral graph theory starts by associating matrices to graphs notably
adjacency and laplacian matrices.
The general theme is firstly to compute and estimate the eigen values of
such matrices and secondly to relate the eigen values to structural
properties of graphs.

This section opens the spectral perspectives on graphs.The spectrum is the
list of distinct eigenvalues with their multiplicities.
The most important matrices associated to a graph are the adjacency
matrix and laplacian matrix.Both are square matrix indexed by the vertex
set V.

The adjacency matrix, A, is an n×n matrix where n = | G | that represents
which vertices are connected by an edge. If vertex i and vertex j are
adjacent then aij = 1. If vertex i and vertex j are not adjacent then aij = 0.
If G is a simple graph then aii = 0 for ∀ i because there are no loops. Also,
because simple implies undirected, aij = aji ∀ i,j ∈ V .

Two matrices are related by the formula A+ L = diag(deg),where
dia(deg)denotes the diagonal matrix recording the degrees.We often view
these matrices as operators on l2V i.e., a finite dimensional space of
complex valued functions on V ,endowed with the inner product
< f, g >=

∑
v f(u) g(v) .

Both are real symmetric.

We will make use of the tools throughout the following chapters and deal
with the eigen values of graph and presents basic properties associated with
the two type of matrices.Also we start with basic definitions and results
from the theory of graph spectra.
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In chapter 2, we determine the spectrum of a circulant matrix,also we
compute the spectra of some special graphs . All graphs in this section are
finite,undirected and simple.
Chapter 3, deals with the recent applications of eigenvalues and spectra of
graphs,in the field of chemistry,applied science,graph coloring etc.Also,we
determine one of the application of strongly regular graphs i.e.,the famous
Friendship Theorem.
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PRILIMINARIES

Graphs :

GRAPH :
It is an ordered tripple (V(G),E(G),ψ(G)) consisting of a non emplty set
V(G) of vertices,a set E(G) of edges disjoint from V(G) and an incidence
function ψ(G) and an incidence function ψ(G) that associates with each
edge of G and unordered pair of vertices of G .

SIMPLE GRAPH :
A graph with no loops and parallel edges are called simple graph.

ISOMORPHISM OF GRAPH :
Let G and H are 2 graphs.The graph isomorphism from G to H is written
as G∼=H is a pair (φ,θ) where φ is a function from V(G) to V(H) and θ from
E(G) to E(H) are bijections with property ψG (e) ={u,v} ⇒ ψH(θ(e))
={φ(u),φ(v)} .

COMPLETE GRAPH :
A simple graph G is said to complete if its each pair of distinct vartices is
joined by an edge.A complete graph with n vertices is denoted by Kn and
has exactly n(n−1)

2
edges.

BI-PARTITE GRAPH :
A graph is bi-paratite if its vertex set can be partitioned into two non
empty subsets X and Y where each edge has one end in X and other end is
Y.Such a partition (X,Y) is called a bi-partition of the graph.

COMPLETE BI-PARTITE GRAPH:
It is a simple bi-paratite graph with bi-partition(X,Y) in which each vertex
of X is joined to each vertex of Y.

SUBGRAPH :
A graph H is a subgraph of G (H⊆G)if V(H)⊆V(G) and E(H)⊆E(G)and is
a restriction of ψ(G) to E(H).

REGULAR GRAPH:
A graph is called k-regular if every vertex of G has degree k.A graph is said
to be regular if it is k-regular for some integer k>0.
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CONNECTEDNESS :
Two vertices U and V of G are said to be connected if there is a U-V path
in G.and a graph G is connected if every 2 vertices are connected i.e,a path
joining every 2 vertices of G.

CYCLE :
A cycle is a closed trial in which all the vertices are distinct.

1.Let G be a graph U∈V. The number of edges incident at v in G is called
the degree of the vertex and is denoted by d(v).The minimum and
maximum of the degrees of the vertices of G is denoted by δ and ∆
respectively

2. A walk in G is a alternating sequence W of vertices and edges starting
and ending wih vertices in which vi−1 and vi are the ends of ei; it is a v0-vp
walk.The integer P is the length of W.

3.A walk is called a path if all vertices are distinct.

4.Let G be a connected graph with vertices 1, 2, ...n .The distance d(i,j)
between the vertices i and j is defined as the minimum length of an i-j path
d(i,j)=0. The maximum value of d(i,j) is the diameter of G.

Matrices

1. An m×n Matrix consist of mn real numbers arranged in m rows and n
coloumns.The entry in row i and coloumn j of the matrix A is denoted by
aij.

2. The transpose of an m×n matrix A is an n×m matrix A.

3. Let A be a square matrix of order n.The entries a11,a22 ,......ann are said
to constitute the diagonal of A.The trace of A is defined as
tr(A)=a11+ a22 +......+ ann.

4. Let A be an m×n matrix.The determinant det(λI-A)is a polynomial in
the (complex) variable λ of degree n and is called the characteristic
polynomial of A.
The equation det(λI-A) = 0 is called the characteristic equation of A.
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By fundamental theorem of algebra the equation has n complex roots and
these roots are called the eigen values of A.
The Eigen values might not all be distinct.The number of times an eigen
value occurs as root of the characteristic equation is called algebraic
multiplicity of an eigen value.
If λ1 , λ2 ,......, λn are eigen values of A,then we may factor the
characteristic polynomial as
det(λI-A) = (λ-λ1) (λ- λ2)......(λ - λ n)
also detA = λ1 , λ2 ,......, λn and tr(A)= λ1 + λ2 + ......+ λn .

5.The geometric multiplicity of the eigen value of A is defined to be the
dimension of the null space of λI-A.

7.If f(A) is a polynomial in A,then eigen values of f(A)are f(λ1) .....f(λn).

8. A square matrix is called symmetric if A=AT .

9. The eigen values of a symmetric matrix are real also the algebraic and
geometric multiplicities of any eigen value coincide.The rank of the matrix
equals the number of non-zero eigen values,counting the multiplicities.

10. In graph theory,the girth of a graph is the length of a shortest cycle
contained in the graph.If graph doesnot contain any cycles its girth is
defined to be infinity.

11. Newtons Method in numerical analysis also known as Newton-Raphson
Method is a method for finding successively better approximations to the
roots of a real valued function.

12. The positive semidefinite matrix is one that is Hermitian , and whose
eigen values are all non-negative.A Hermitian matrix is one which is equal
to its conjugate transpose.
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CHAPTER 1
BASIC PROPERTIES OF MATRICES AND GRAPH

SPECTRA.

This Chapter gives a survey of the relationship between the properties of
a graph and the spectrum of its adjacency matrix and laplacian matrix since
eigen values are at the heart of understanding the properties and structures
of a graph.
A Graph G can be represented in matrix form i.e., adjacency matrix A, it
is a square symmetric matrix and all of the elements are non-negative,aij=aji

Properties of Adjacency Matrix :

• PROPERTY 1 : : The number of walks of length l from Vi to Vj in G
is the element in position (i,j) of the matrix Al.

• PROPERTY 2 : : The trace of A2 is twice the number of edges in the
graph.

• PROPERTY 3 : : The trace of A3 is six times the number of triangles
in the graph.

• PROPERTY 4 : : The coefficients of the characteristic polynomial
that coincide with matrix A of G have following characteristics ,
1)C1 = 0.
2)−C2 is the number of edges of G.
3)−C3 is twice the number of triangles in G,
where the characteristic polynomial is λn + C1λ

n−1+ C2λ
n−2.....+Cn .

• PROPERTY 5 : : The sum of eigen values of a matrix equals its trace.

• PROPERTY 6 : If a matrix is real symmetric ,then each eigen value
of the graph relating to the matrix is real.
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• PROPERTY 7 : : The geometric and algebraic multiplicity of each
eigen value of a real symmetric matrix are equal.

• PROPERTY 8 : : The eigen vectors that corresponds to the distinct
eigen values are orthogonal

• PROPERTY 9 : : If a graph is connected ,the largest eigen value
has multiplicity of 1.

NOTE: : If eigen values of 2 graphs donot match then the graphs are
not isomorphic.
converse is not true i.e.,graphs which are not isomorphic but have same eigen
values.

they have eigen values -2,0,0,0,2.
The largest eigen value λ1(G) is called the index of G.

Laplacian Matrix

The laplacian is a alternative to the adjacency matrix for describing adjacent
vertices of a graph.It is a square matrix ,the main diagonal of the matrix rep-
resents the degree of the vertex while the other entries are as follows,
Lij = {-1 , if Vi and Vj are adjacent}
0r it gives 0 otherwise .
Laplacian can also be derived from D-A , where D is diagonal matrix whose
entries represent degrees of the vertices and A is the adjacency matrix .
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EXAMPLE :

A=


0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 D=


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

 D-A =L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 2 0
0 −1 0 1



The Laplacian of a connected graph has eigen values λ1≤λ2≤.....≤λn. The
algebraic connectivity is defined to be λ2, the second smallest eigen value.

• PROPERTY 1 : The smallest eigen value of L is 0. Laplacian matrix
being a semi-definite matrix have n real laplace eigen values
0=λ1≤λ2≤.....≤λn.

• PROPERTY 2 : The multiplicity of 0 as an eigen value of L is the
number of connected components in the graph.

• PROPERTY 3 : The algebraic connectivity is positive if and only if
the graph is connected.

• PROPERTY 4 : The eigen values of a self adjoint matrix are all real.
laplacian matrix is a self adjoint matrix.
PROOF : Suppose λ is an eigen value of the self adjoint matrix L and V is
a non-zero eigen vector of λ. Then
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λ ‖ v ‖ 2= λ < v,v > = < λv , v > = < Lv , v > = < v, Lv > =λ < v,v >
so we have λ ‖ v ‖ 2 =λ ‖ v ‖ 2

since v 6= 0 we have ‖ v ‖ 2 6= 0
i.e., λ = λ
so λ is real.
Eigen values of a Laplacian matrix are all real since ,Laplacian Matrix of a
graph is symmetric and consist of real entries so LG =LG∗ where LG∗ is
conjugate transpose of LG . so, LG is Self Adjoint. By theorem all eigen
values of LG are real.

• PROPERTY 5 : The adjacency eigen values lies in the interval [-d,d] .
The laplacian eigen values lies in the interval [0,2d].

•PROPERTY 6 : The number of distinct adjacency respectively
laplacian eigen values is atleast δ+ 1 .

SPECTRUM OF A GRAPH

The spectrum of a graph is the set of eigen values of G together with their al-
gebraic multiplicities or number of times that they occur. If a graph has k dis-
tinct eigen values λ1>λ2>......>λk. with multiplicities m(λ1), m(λ2),...,m(λk)
then the spectrum of G is written as

Spec(G) =

(
λ1 λ2 . . λn

m(λ1) m(λ2) . . m(λn)

)
where

∑k
i=0 λi =n

9



NOTE : For the adjacency matrix and laplacian matrix following can be
deduced from the spectrum:
(1) The number of vertices.
(2)The number of edges.
(3)Whether G is regular.
(4)Whether G is regular with any fixed girth.
For adjacency matrix following follows from spectrum:
(5)The number of closed walk of any fixed length.
(6) Whether G is bipartite.
For laplacian matrix the following follows from spectrum:
(7)The number of components.
(8)The number of spanning trees.

PROOF: (1) We have ,A graph with n vertices have n eigen values .Thus
proof is trivial.
(2) and (5) have been proved from the theorem that ,For any n×n matrix A
and B,the following are equivalent: • A and B are cospectral.
• A and B have the same characteristic polynomial.
• tr( Ai ) = tr( Bi) for i= 1,2,...n.
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for,
A pair of graphs are cospectral mates if they have same spectrum but are
non-isomorphic.
also by Newtons relations the roots λ1 ≥ λ2 ≥ ...... λn of a polynomial of
degree n are determined by the sums of the powers

∑n
j=1λj

i , i=1,2,...n.

Now tr(Ai) is the sum of the eigen values of Ai which equals the sum of ith

powers of the roots of characteristic polynomial.
If A is the adjacency matrix of a graph,then tr(Ai) gives the total number
of closed walks of length i, in particular ,they have the same number of
edges and triangles(i=3).
so cospectral graphs have same number of closed walks of length i.

Now ,(4) follows from (5) since, G is bipartite iff G has no closed walks of
odd length.
(3) follows from preposition which states,
Let α 6=0 with respect to the matrix Q= αA +βJ + γD + δI , a regular
graph cannot be cospectral with a non-regular one, except possibly when
γ=0 and -1 < β

α
< 0 .

and(4) follows from (3) and the fact that in a regular graph the number of
closed walks of length less than the girth depends on the degree only.
The last two statements follows from the well-known results of laplacian
matrix.Indeed the co-rank of L equals the number of components and if G
is connected, the product of the non-zero eigen values equals n times the
number of spanning trees.

.

11



CHAPTER 2
SPECTRA OF GRAPH CLASSES

In this chapter we compute the spectra of graph classes.It contains several
results on the eigen values of graphs.

CIRCULANT MATRIX

A circulant matrix of order n is a square matrix of order n in which all the
rows are obtainable by successive cyclic shifts of one of its row (usually first
row).

Example

Circulant with first row (a1, a2, a3, a4) is the matrix,


a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1


LEMMA 2.1 :
Let A be a circulant matrix of order n with first row (a1, a2,a3...an) then

Sp(a)={a1+a2w+a3w
2+...+anw

n−1: w is an nth root of unity }
Sp(a)={a1+ρr+ρ2r+ρ3r+.........+ρ(n−1)r:} 06r6n-1 and ρ is a primitive nth

root of unity }

PROOF: Given A is the Circulant Matrix of Order n with first row

(a1, a2, ......, an) then


a1 a2 ...... an
an a1 ...... an−1

an−1 an ...... an−2

...............................
a2 a3 ...... a1



Hence, D= |λI − A| =


λ− a1 −a2...... −an
−an λ− a1....... −an−1

...............
−a2 −a3...... λ− a1


12



Let Ci be the ith column of 0 ,1≤ i ≤ n and , w be an nth root of unity.
Replace C1 by C1 + C2w + ..... + Cnw

n−1

Let Ci be the ith column of 0 ,1≤ i ≤ n and , w be an nth root of unity.
Replace C1 by C1 + C2w + ..... + Cnw

n−1

D = -


λ− a1 − a2w − ...− anwn−1 −a2 ...... −an

w(λ− a1 − a2w − ...− anwn−1) λ− a1 ..... −an−1

..............
wn−1(λ− a1 − a2w − ...− anwn−1) −a3 ..... λ− a1


Now taking λw =a1 + a2w+ ...+ anw

n−1 . we have,

D =


λ− λw −a2 ....... −an

w(λ− λw) λ− a1 ...... −an−1

..................
wn−1(λ− λw) −a3 ....... λ− a1


Hence (λ− λw) isa factor of D.
This gives D =

∏
wwn=T (λ-λw)

Thus Sp(A) = {λw: wn=1} .

SPECTRUM OF COMPLETE GRAPH Kn :

The spectrum of complete graph Kn can be determined easily . The

adjacency Matrix A is given by A=


0 1 1...1
1 0 1...1
. . .....
1 1 1...0

 which is a circulant

matrix of order n with first row (0 ,1, 1,...1) by lemma
λw= a1 + a2w + a3w

2 + ...+ anw
n−1

= w + w2 + w3 + ...+ wn−1

=

{
n− 1, ifw = 1

−1, ifw 6= 1

where w is the nth root of unity . (1 +w +w2 +...+ wn−1 = 0 ) for the
eigen values n-1 A has eigen vector X = (1, 1, , ..1)T . The matrix −1

n−A has

13



a rank 1 and thus -1 is an eigen value of multiplicity n-1. Hence n-1 has
multiplicity 1.

so, Sp( Kn) =

[
n− 1 −1

1 n− 1

]

Example :

Consider K4

Sp(K4)=

(
3 −1
1 3

)
Eigen values of K4 are 3 and -1 with multiplicities 1 and 3 respectively.

Laplace Matrix is nI-J ,which has spectrum

(
0 n
1 n− 1

)
where J is a 1-matrix

of order n .
PROPERTY : The complete graph is the only connected graph with ex-
actly two distinct eigen values .

SPECTRUM OF THE CYCLE Cn :

The spectrum of the cycle Cn can be determined by the fact that the adja-
cency matrix of Cn is a circulant matrix.
Labelling the vertices of the cycle Cn as 0,1,....(n-1) the vetex i is adjacent
to i±(mod n).
Hence the adjacency matrix of Cn is given by,

A =


0 1 0... 0 1
1 0 1... 0 0
0 1 0... 0 0
. . .... . .
1 0 0... 1 0


14



which is a circulant matrix with first row (0 1 0 ... 0 1)

LEMMA 2.2:

SpCn ={ρr+ρr(n−1) : 0 ≤ r ≤ (n−1), where ρ is the primitive nth root of unity}
Take ρ = exp

2πi
n =cos

2π

n
+ i sin (

2π

n
)

ρn + ρr(n−1) =cos
2πr

n
+ i sin

2πr

n
+cos

2πr(n− 1)

n
+i sin

2πr(n− 1)

n

= 2 cos πr cos (
2πr

n
- πr) + i sin πr cos (

2πr

n
− πr)

= 2 cos (
2πr

n
- πr) [cosπr + i sinπr]

= 2 cos
2πr

n
. 0 ≤ r ≤ n− 1

Thus the eigen values Cn are λ,

λ = 2 cos
2πr

n
, 0 ≤ r ≤ n− 1

But these numbers are not all distinct taking account of coincidences
the complete description of spectrum is

Sp(Cn) =

(
2 2cos

2π

n
... 2cos

(n− 1)π

n
1 2 ... 2

)

when n is odd

=

(
2 2cos2π

n
... 2cos

(n− 1)π

n
2

1 2 ... 2 1

)

n is Even.

Examples :
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Sp(C6) =

(
2 .618 −1.618
1 2 2

)

SPECTRUM OF BIPARTITE GRAPHS:

THEOREM 2.3 :
A graph is bipartite if and only if spectrum is symmetric with respect to
the origin.
proof: Let G be bipartite graph with bipartition U and V .

Let G has an adjacency matrix of the form, A=

[
0 P
Q 0

]
where , Q=P T

Note that the non-zero entries of P and Q corresponds to the edges incident
with the vertices from U and V respectively.

Suppose λ is an eigen value of G and X =

(
x1

x2

)
is an eigen value of G

corresponding to λ.(
0 P
Q 0

) (
x1

x2

)
= λ

(
x1

x2

)
(
Px1

Qx2

)
= λ

(
x1

x2

)
thus, Px2 = λ x1 , Qx1 = λ x2 .

Now consider vector y=

(
x1

−x2

)

16



Ay =

(
0 P
Q 0

) (
x1

−x2

)
=

(
−Px2

Qx1

)
= λ

(
−x1

x2

)
i.e., Ay = -λy.

-λ is also an eigen value of G .
So, the spectrum of a bipartite graph is symmetric about 0.
converse is also true.

NOTE : A Graph G is bipartite iff λ1= -λn ,also if λ is an eigen value then
so is -λ and C(2k − 1)=0 for n≥1.

SPECTRUM OF COMPLETE BIPARTITE GRAPH :

THEOREM 2.4 :
Consider the complete bipartite graph ,Kp,q then

Sp (Kp,q) =

(
0

√
pq −√pq

p+ q − 2 1 1

)
PROOF : Let V(Kp,q) have the partition ( X , Y ) with | X | = p and
| Y |= q

The adjacency matrix of Kp,q is given by, A =

(
0 Jp,q
Jp,q 0

)
where Jr,s

stands for all 1 matrix of size r×s

EXAMPLE : ConsiderK2,3

Sp (K2,3) =

(
0
√

6
√
−6

3 1 1

)
.
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The Laplace spectrum is

(
0 m n m+ n
1 n− 1 m− 1 1

)
SPECTRUM OF REGULAR GRAPHS:

Following theorem shows that regularity of a graph G is an eigen value of G.
THEOREM 2.5:

Let G be a k-regular graph of order n.then, (1) k is an eigen value of G.
(2)If G is connected every eigen vector corresponding to the eigen value k is
a multiple of 1 and the multiplicity of k as an eigen value of G is 1.
(3) For any eigen value λ of G, | λ | ≤ k , Hence Sp (G) ≤ [-k,k] ,k=degree.

SPECTRUM OF STRONGLY REGULAR GRAPH :

DEFINITION :A Strongly regular graph with parameters (n,k,s,t) is a k
regular graph with following properties :
(1) Any two adjacent vertices of G have exactly s common neighbours in G.
(2)Any two non-adjacent vertices of G have exactly t common neighbours
in G.
It is usually denoted as srg(n,k,s,t).

EXAMPLE :• The Cycle C5 is an srg(5,2,0,1).
In C5 ,any two adjacent vertices have no common neighbours and any two
non-adjacent vertices have 1 common neighbours .
•Shrikande graph , S=srg(16,6,2,2).

THEOREM 2.6 :
If G is a strongly regular graph with parameters (n,k,s,t) then k(k-s-1) =
t(n-k-1).
PROOF: We prove this theorem by counting the number of induced

paths on three vertices in G having the same vertex V of G as end vertex in
two different ways. Consider the vertex V of G. There are k neighbours W
of V in G.since G is a strongly regular graph, for each W, there are s
vertices that are common neighbours of V and W.
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The remaining k-1-s neighbours of W induces a P3 with V as an end vertex.
As this is true for each neighbour W of V in G,there are k(k-s-1) paths of
length 2 with V as an end vertex.
so,we can compute this in another way.
There are n-k-1 vertices U of G that are non-adjacent to V.V and U have t
common neighbours. Each one of these t vertices give rise to an induced P3

in G with V as an end vertex.
The number is t(n-1-k). so we have, k(k-s-1) = t(n-1-k).

THEOREM 2.7 :
Let G be srg(n,k,s,t) and let A be the adjacency matrix of G ,then A2 = kI
+ sA + t(J-I-A).

LEMMA 2.8 :
Let G be a graph which is neither complete nor empty and let A be the
adjacency matrix of G . Then G is strongly regular if A2 is a linear
combination of A,J and I.
PROOF : Let A be the adjacency matrix of G.
Given A2 is a linear combination of A ,J and I.
Let A2 = aA + bJ + cI where a,b,c are scalars. for i=j , the diagonal
entries in A2 will be b+c.
By Lemma which states The number of walks of length l in G from Vi to Vj
is the entry in position (i,j) of the matrix Al. Thus there are b+c walks
from Vi to Vj so each vertex of G is adjacent to b+c vertices. Hence G is
b+c regular.
If UiVj ∈ E(G) ,then the (i, j)th entry of A2 will be (a+b). so by Lemma,
there are a+b walks of length 2 from Vi to Vj .Thus any two adjacent
vertices in G have a+b common neighbours.
Also if Vi Vj is not an edge of G,then the (i, j)th entry of A2 will be b.
Hence there are b walks in G from Vi Vj .By Lemma two non adjacent
vertices in G have b common neighbours.
Thus G = srg(n, b+c, a+b, b).

THEOREM 2.9 :
Let G be a strongly regular graph with parameters (n,k,s,t) and let A be
the adjacency matrix of G. Let ∆=(s− t)2 + 4(k-t).Then any eigen value of
A is either k or 1

2
(s-t±

√
∆) .
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PROOF :We know K is an eigen value of A with 1 as the multiplicity and
1 as the corresponding eigen vectors since G is k-regular.
Let λ be another eigen value of A with y as the corresponding eigen vector
so that Ay=λy.
By Lemma, A2 = kI + sA + t(J-I-A).
A2y = ky + sAy + t(-y-Ay)
λ2y = ky + sλy + t(-y-λy)
λ2 = k + sλ + t(-1-λ)
λ2 - λ(s-t)-(k-t) =0
so we have λ = 1

2
(s-t±

√
(s− t)2 + 4(k − t)

= 1
2

(s-t±
√

∆) .

Thus the eigen values of G must be either k or 1
2

(s-t±
√

∆) .

THEOREM 2.10 :
Let G be a connected strongly regular graph with parameters (n,k,s,t). Let
∆=(s− t)2 + 4(k-t) and b=n-k-1. Then the number m1 = 1

2
(n-1 +

(n−1)(t−s)−2k√
∆

) and m2 = 1
2
(n-1 - (n−1)(t−s)−2k√

∆
) are non-negative integers.

EXAMPLE : The spectrum of the shrikande graphs,S=srg(16,6,2,2) is
given by the theorem 2.8 and 2.9.
∆ =(s− t)2 + 4(k-t)= 0 + 4(6-2) = 16

λ = 1
2

(s-t±
√

∆) = 1
2

(2-2 ±
√

16) = ±2 are the eigen values.

Thus λ1 = 2 , λ2 = -2 .

m1 = 1
2
(n-1 + (n−1)(t−s)−2k√

∆
) = 1

2
(15-3) =6 ,

m2 = 1
2
(n-1 - (n−1)(t−s)−2k√

∆
)

are the multiplicities of λ1 and λ2.
k=6 is also an eigen value with multiplicity 1 as it is connected.

Sp(S)=

(
6 2 −2
1 6 9

)
.
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THEOREM 2.11 :
Let G be a connected regular graph with exactly three distinct eigen values.
Then G is strongly regular.
PROOF : Let G have n vertices and suppose it is k-regular.since G has 3
distinct eigen values, it has diameter atmost 2 by a corollary since G has 3
distinct eigen values,it has diameter atmost 2 by a corollary ,Let G be a
connected graph with k distinct eigen values and let d be the diameter of
G.Then k > d .Since,G is connected and is neither complete nor empty,its
diameter cannot be 0 or 1 and hence it must be 2. k is an eigen value of G
since it is k-regular. Let λ1 and λ2 be the other two eigen values and let
P(λ) = (λ-λ1)(λ-λ2).
Then (A-KI)P(A) = 0 .
since G is connected ,k has multiplicity 1 and hence the null space of
(A-KI) is spanned by 1. As (A-KI)P(A) =0 each column of P(A) is a
multiple of 1.Also since P(A) is symmetric. P(A) = αJ for some α.
(A-λ1 (A-λ2)) =αJ
Thus A2 is a linear combination of A,I and J.
By Lemma 2.7 G is strongly regular graph.
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CHAPTER - 4
APPLICATION OF EIGEN VALUES OF GRAPHS

Eigen values of graphs appear in mathematics ,physics,
chemistry and computer science . It is often efficient in
counting structures i.e., acyclic digraphs,spanning graphs,
Hamiltonian cycles, independent sets, K colourings etc.

• EIGEN VALUES IN APPLIED SCIENCE:

1. INFORMATION TECHNOLOGY:
In shanon IT,the channel capacity which characterizes the maximum
amount of information that is transmitted over a channel or stored into a
storage medium per bit can be expressed in terms of the eigen values of its
channel graph. Combinatorically,the capacity can be discussed by counting
the number of closed walks of length k in the channel graph G and then by
letting the k tend to infinity .
construction of encoder or decoder for a given code is based on the largest
eigen value of its channel graph.

2. In QUANTUM CHEMISTRY :
Here ,the skeleton of a non-saturated hydrocarbon is represented by a
graph. The energy levels of the electrons in such a molecule are the eigen
values of the graph.

The stability of molecule is closely related to the spectrum of its graph .
correspondence :
V ertex− CarbonAtom
Edge−Bond
V ertexdegree− V alency
Adjacency Matrix -Topological Matrix

3. PROTIEN STRUCTURE:
The 3 dimensional stucture of protien is the key to understand their
function and evolution[Vi, P10] .
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A Protien is formed by a sequential joining of amino acids end-to-end to
form along chain like molecule or polymer called polypeptides. Four major
protien class are shown in figure
Cylinder represent helices and arrows represent strands.Two challenges are
identifying the fold adopted by polypeptide chain and identifying
similarities in protien structure.

Graphs have helped to represent the topology of protien structures no
matter how complex.The main problem is to define ver-
tices and edges. Below are some examples of protien with their graphs below,

The basic unit of a protien is its amino acids residue:
- To study cluster identification the amino acids represent the vertices and
three dimensional connectivity between them is represented by edges.
-To study fold and pattern identifiaction and the folding rules of proteins,
α− helices and β strands are used for vertices and spatially closed
structures are usedfor edges.
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-To identify protein with similar folds the backbones are the vertices and
spatial neighbours within a certain radius are edges.
- Connected graphs are used to represent αhelical structures.The vertices
represent secondary structures and edges represent contact between helices.
That is, Properties of graphs and their graph spectral give information
about protein structures.

4.IN PHYSICS :
Treating the memmbrane vibration problem by approximative solving of
the corresponding partial differential equation leads to consideration of
eigen values of a graph which is a discrete model of the membrane.
The spectra of graphs appear in a number of problems in statistical physics
for example,we mention ,dimmer problem.
The dimmer problem is related to the investigation of the thermodynamic
properties of a system of diatomic molecules,absorbed on the surface of a
crystal.The most favourable points for the absorption of atoms on such a
surface form a 2-dimensional lattice and a dimmer can occupy two
neighbouring points.It is necessary to count all ways in which dimers can be
arranged on the lattice without overlapping each other, so that every lattice
is occupied.
A graph can be associated with a given absorption surface.The vertices of
the graph represent the points which are the most favourable for
absorption.Two vertices are adjacent if and only if the corresponding points
can be occupied by a dimmer .
In this manner an arrangement of dimmers on the surface determines a
1-factor in the corresponding graph or viceversa.
Thus dimmer problem is reduced to the task of determining the number of
1-factor in a graph .

• IN GRAPH COLORING:
One of the classic problems in graph theory is vertex-coloring, which is the
assignment of colors to the vertices of a graph in such a way that no two
adjacent vertices have the same color. The object is to use as few colors as
possible.
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The proper coloring of a graph also forms a natural partition of the vertex
set of a graph. The chromatic number, χ(G), is the least number of colors
required for such a partition. A graph G is l-critical if χ(G) = l and for all
induced subgraphs A 6= G we have χ(A) < l. The spectrum of a graph gives
us insight into the chromatic number.
We have a property 1, that , Given a graph G with χ (G) = l ≥ 2, there
exists a subgraph of G, A6= G, such that χ (A)= l, and every vertex of A
has degree ≥ l in A.
Property 2 says , For any graph G, χ(G) ≤ 1 + λ1 , where λ1 is the largest
eigenvalue of the adjacency matrix of G.
Proof: From Property 1, there is an induced subgraph A of G such that
χ(G) = χ(A) and dmin(A) ≥ χ(G)− 1, where dmin(A) is the least degree
of the vertices of A.
Thus we have χ(G) ≤ 1 + dmin(A) ≤ 1 + λ1(A) ≤ 1 + λ1(G).
Of course, the absolute largest value of χ(G) is n, the number of vertices.

If λ1 < n− 1,
then we will have a smaller maximum than n.
Property 3: The lower bound of the chromatic number is
χ(G) ≥ 1+ λ1

−λmin

A classical application of vertex coloring is the coloring of a map. To make
the process as inexpensive as possible, we want to use a few colors as
possible. In the graph, the countries are represented by vertices with edges
drawn between those countries that are adjacent. Determining the
chromatic number of the graph gives us the fewest colors necessary to color
the map.
Another application to graph coloring is a sorting problem, such as sorting
fish in a pet store. Some fish can be in the same tank together, while other
fish cannot. Say we have fish types A, B, C, D, E and F. They can be put
into tanks according to the chart below
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If the graph is set up such that the fish are the vertices and edges are
drawn between those that cannot be in a tank together, the chromatic
number will tell us how many tanks we need.

The adjacency matrix for G is A =



0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 1 1 0
0 1 1 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0


which has λ1=

2.853 and λ(min) = 2.158 Substituting these into the formula from
Property 4-3, χ(G) ≥ 1+ λ1

−λmin
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we get χ(G) ≥ 2.322. This tells us that we need at least three colors for our
graph. This will save us time by preventing us from attempting to color it
with fewer than 3 colors. In this case, we will need 3 tanks, as shown above
in Figure . One tank will hold fish A and D, the second tank will hold fish
B and E, and the third tank will hold fish C and F. There are many
applications of graph coloring, and spectral of the graph gives us insight to
the chromatic number.

• IDENTIFYING CLUSTERS : is an important aspect in the field of
electrical network connections[V i, p9]. Graph spectral method is extremely
helpful in this, and can find the needed results with minimal computations.
An adjacency matrix is used, but edge weights are used as entries.The
weights are 1

dij
.

where dij represents the distance from vertices i and j. The goal is to find
the location of n vertices that minimizes the weighted sum of the squared
distances between the vertices.
The key point of interest is that the second smallest eigenvalue of the
Laplacian matrix, λ2, and its vector component gives the clustering points
in the graph. The vertices that are clustered have the same value for the
second smallest eigenvalue. Also, the largest eigenvalue contains
information regarding only one of the clusters. The vertex with the largest
vector component is the vertex with the highest degree.

• IN SOCIAL SCIENCE :
Social network have been studied actively in social sciences ,where the
general feature is that the network are viewed as static graphs whose
vertices are individuals and whose edges are the social interactions between
these individuals . The problem is to analyze the topology and dynamics of
data sets which have relationships between themselves in the network.

FRIENDSHIP THEOREM :
As an application of theorem 2.11 we prove Friendship Theorem which can
be stated as follows; Suppose in a group of atleast 3 people we have the
situation that any pair of persons have precisely one common friend, then
there is always aperson who is everybodys friend.
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THEOREM 3.1: Let G be garph in which any two distinct vertices have
exactly one common neighbour .Then G has a vertex that is adjacent to
every other vertex and more precisely G consist of a number of triangles
with a common vertex.

PROOF : From the hypothesis ,it easily follows that G is connected.Let
the vertices of G be 1, 2, ...n.
Let i and j be non adjacent vertices of G, Let N(i) and N(j) be their
respective neighbour sets.with u ∈N(i), we associate that v∈N(j) which is
unique common neighbour of u and j.
set v=f(u) and f is one to one mapping from N(i) to N(j) .Indeed if w ∈
N(i) ,w 6= u satisfies f(w)=v then u and w would have two common
neighbours namely i and v which is a contradiction to our hypothesis.
Therefore,f is one-one and hence | N(i)| ≤ |N(j) | .
similarly | N(j)| ≤ |N(i)| .
i.e., | N(i)| = |N(j) | .
Suppose G is k-regular ,by the hypothesis G must be strongly regular with
parameters (n,k,1,1). Then
∆ = 4(k-1) and so,

√
∆ = 2

√
k − 1 also

m1 = 1
2
(n-1- 2k

2
√
k−1

) and m2 = 1
2
(n-1+ 2k

2
√
k−1

)

m1 - m2 = 1
2
(n-1- 2k

2
√
k−1

)

is an integer by theorem 2.9.
so k divides k2 which happens only when k=0 or k=2.
If k=0 ,G is connected n=1 ,then the theorem holds trivially.
If k=2 then in view of hypothesis that any two vertices have exactly one
common neighbour,G must be the complete graph on 3 vertices and again
theorem holds.
Now suppose G is not regular,then there must be adjacent vertices i and j
with unequal degrees.
Let u be the unique common neighbour of i and j and assume without loss
of generality that degrees of i and u are unequal.
Let v be any vertex other than i,j and u .If v is not adjacent to both i and
j,then the degree of i and j would be equal to that of v ,which is not
possible.
Hence v is adjacent to either i and j similarly,v is adjacent to either i or j
.similarly v is adjacent to either i or u.
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since v cannot be adjacent to both j and u then v must be adjacent to i.
Therefore all the vertices other than i and j are adjacent to i . Thus G
consist of a number of triangles with i as the common vertex.

REMARK : Thus if any two individuals in a group have exactly one
common friend,then there must be a person who is a friend of everybody.
This justifies the name ”FRIENDSHIP THEOREM ”.
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CONCLUSION

We consider the question to what extend graphs are determined by their
Spectrum.In this paper we introduce some basic ideas of spectral graph
theory ,primarily focusing on finding the spectra of certain types of graphs
and its algebraic connectivity.
Also we found that there is a wide range of application for eigen values of
graphs and hence the spectra of graphs .
The research in this field changes its direction to further studies of
characterizations of Spectrum and expand to other matrices i.e., Signless
Laplacian Matrix and Normal Laplacian Matrix.
I hope I made a basic idea to stimulate more research in this field.
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