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INTRODUCTION

Representation theory is a branch of Mathematics that studies abstract
algebraic structures by representing their elements as linear tranformation of
vector spacec and studies modules over these abstract algebraic structures.A
representation makes an abstract algebraic object more concrete by describ-
ing its elements by matrices and the algebraic operations in terms of matrix
addition and matrix multiplication.The algebraic objects amenable to such
a description include groups,associative algebras and Lie algebras.The most
prominent of these is the Representation theory of groups in which elements
of a group are represented by invertible matrices in such a way that the group
operation is matrix multiplication.

Representation theory is a useful method because it reduces problems in
Absrtact Algebra to problems in Linear Algebra,a subject that is well under-
stood.Furthermore,the Vector Space on which a group is represented can be
infinite dimensional and by allowing it to be, for instance,a Hilbert space,methods
of analysis can be applied in the theory of groups.Representation theory is
also important in Physics because,for eg,it describes how the symmetry group
of a physical system affects the solutions of equations describing that system.

Representation theory was born in 1896 in the work of the German Mathe-
matician F.G Frobenius.The work was triggered by a letter to Frobenius by
R.Dedikind.In this letter Dedikind made the following observation:
Take the multiplication table of a finite group G and turn it into a matrix
X by replacing every entry g of this table by a variable Xg.Then the deter-
minant of X factors into a product of irreducible polynomials{Xg} in ,each
of which occurs with multiplicity equal to its degree.Dedikind checked this
surprising fact in a few special cases,but could not prove it in general.So he
gave this problem to Frobenius.In order to solve this problem,Frobenius cre-
ated Representation Theory of Finite Groups.

A feature of Representation Theory is its pervasiveness in Mathematics.There
are two sides to this.First,the application of Representation Theory are di-
verse in addition to its impact on Algebra,Representation theory illuminates
and generalizes Fourier analysis via Harmonic analysis is connected to Ge-
ometry via invariant theory and the Erlangen program and has an impact in
Number Theory via automorphic forms and the Langlands program.
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The second aspect is the diversity of approaches to Representation The-
ory.The same objects can be studied using methods from Algebraic Geome-
try,Module Theory,Analytic Number Theory,Differential Geometry,Operator
Theory,Algebraic combinatorics and Topology.

The sucess of Representation Theory has led to numerous generalizations.One
of the most general is in Character Theory.The algebraic objects to which
Representation Theory applies can be viewed as particular kinds of cate-
gories and the representations as functions from the object category to the
category of Vector Spaces.This description points to two obvious genere-
lizations:first,the algebraic objects can be replaced by more general cate-
gories;second,the target category of Vector Spaces can be replaced by other
well understood categories.

2



PRELIMINARIES

VECTOR SPACE:

A vector space over a field F is a set V together with two operations’+’and
’.’ are defined, called vector addition and vector multiplication, such that ∀
u,v,w in V and c,d be scalars

Associative law of addition : u+(v+w)=(u+v)+w

Commutative law of addition : u+v=v+u

Additive identity : ∃ an element 0 in V called the zero vector such that
0+v=v+0=v

Additive inverse : ∀v in V ∃ an element -v in V,called the additive inverse
of v such that v+(-v)=0

Associative law of multiplication : c.(u.v) = (c.u).v

Unitary law : 1.v = v, 1 is the multiplicative identity

Distributive law : c.(u+v) = c.u + c.v

Distributive law : (c+d).v = c.v +d.v

LINEAR COMBINATION:

Let V be a vector space.If v1, v2, ......vn ∈V,then any vector V=c1v1 + c2v2 +
.....+cnvn wherec1, c2, ......, cn∈ F is called a linear combination of the vectors
v1, v2, ...., vn.
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LINEAR SPAN:

Let V be a Vector Space and S be any non-empty subset of V,then the
linear span of S is the set of linear combination of finite sets of elements of

S = {V1, V2, .....Vn} and is denoted by L(S).

LINEARLY INDEPENDENT:

Let V be a Vector Space.A finite set {V1, V2, ....Vn} of vectors of V is said to be
linearly independent if every relation of the form C1V1+C2V2+......+CnV n =
0 ,Ci ∈ F where i = 1,2,....n such that

C1 = C2 = ..... = Cn = 0

LINEARLY DEPENDENT:

Let V be a Vector Space.A finite set {V1, V2, .....Vn} of vectors V is said to
be linearly dependent if ∃ scalars C1, C2, ....Cn ∈ F not all of them 0 such that

C1V1 + C2V2 + .....+ CnVn = 0

BASIS:

A subset S of a Vector Space V is said to be a basis for V if

• S consists of linearly independent vectors.

• Each vector in V is a linear combination of a finite number of elements
of S.
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LINEAR TRANSFORMATION:

Let U and V be two vector spaces.Then a mapping f :U−→V is called a
Linear Transformation of U into V if

• f (U1 + U2) = f(U1) + f(U2) ;∀ U1 , U2 ∈ U

• f(cU) = c∗ f(U) ; ∀ u ∈ U , ∀ c ∈ F.

GROUP:

Let G be a non-empty set with binary operation denoted by *.Then the
algebraic structure (G∗) is a group if the binary operation * satisfies the fol-
lowing postulates.

• Closure property:

a ∗ b ∈ G ∀ a,b ∈ G.

• Associative property:

(a∗b) ∗ c = a ∗ (b∗ c).

• Existence of identity :

There exist an element e ∈ G such that

e ∗ a = a ∗ e = a ∀ a ∈ G.

• Existence of inverse:

For each element a ∈ G ∃ an element b ∈ G such that

b ∗ a = e = a ∗ b.

5



SUBGROUP:

A non-empty subset H of a group G is said to be a subgroup of G if the
composition in G is also a composition in H and for this composition H itself
is a groip. If H is a subgroup of G , we shall write H ≤ G.

ADDITIVE GROUP:

An additive group is a group where the operation is caled addition and de-
noted by +. In an additive group , the identity element is called zero and
the inverse of element a is denoted by -a.

ABELIAN GROUP:

A group (G , ∗) is called an abelian group if

a ∗ b = b ∗ a ∀ a , b ∈ G.

GENERALIZING SET OF A GROUP:

Generalizing set of a group is a subset such that every element of the group
can be expressed as the combination of finitely many elements of the subset
and their inverses.

FINITE GROUP:

If (G, ∗) is a group such that the number of elements of G is finite , then the
group (G , ∗) is said to be a finite group and the number of elements of G is
called the order of the group G.If G is not finite , then the group (G , ∗) is
said to be an infinite group.

GROUP HOMOMORPHISM:

A homomorphism from a group G to a group H is a mapping φ : G →
H that preserves the group operation

φ(ab) = φ(a) φ(b) ∀ a , b ∈ G.

6



GROUP ISOMORPHISM:

Let G and H be two groups and let φ : G → H be a function.Then φ is
said to be a group homomorphism if

• φ is one - one and onto

• φ(ab) = φ(a) φ(b) ∀ a , b ∈ G.

ENDOMORPHISM:

An endomorphism of a vector space V is a linear map f:V → V and an
endomorphism of a group G is a group homomorphism f : G → G.

7



Chapter 1

REPRESENTATION OF A
GROUP

DEFINITION 1.1:

Let G be a finite group and K be a field.A representation of G over K is
a homomorphism ρ :G → GL(V) where V is a vector space of finite dimen-
sion over field K.The vector space V is called a representationspace of G and
its dimension the dimension of representation.

NOTE:

Strictly speaking the pair (ρ , V) is called the representation of G over the
field K.But we simply call ρ a representation or V a representation of G.Let
us fix a basis V1, V2, ........Vn of V.Then each ρ(g) can be written in a matrix
form with respect to the basis.This defines a map ρ :G →GLn(K) which is a
group homomorphism.

DEFINITION 1.2:

Let ρ be a representation of G and W ⊂ V be a subspace.The space W
is called a G-invariant (or stable) subspace if ρ (g)(w) ∈ W ∀ w ∈ W and ∀
g ∈ G.
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NOTE:

If W is a G-invariant subspace of V then we restrict the representation to
the subspace W and we can define another representation ρw : G → GL(W)
where ρ W (g) = ρ(g)|W. Hence W is also called a subrepresentation.

EXAMPLES:

1. Let G = Z|mZ and K = R.Let V = R2 with basis e1, e2. Then we have
representation of Z|mZ is

ρr : 1 →
[
cos 2πr

m
−sin2πr

m

sin 2πr
m

cos2πr
m

]
where 1≤ r ≤ m-1.

Note that there are m distinct representations.

2. Let φ : g → H be a group homomorphism.Let ρ be a representation
of H. Then ρ◦φ is a representation.

3. Permutation representation of Sn:

Let Sn be the symmetric group on n symbols and K be any field. Let V
= Kn with standard basis e1, e2, ......en.The representation of Sn is defined as

σ(ei) = eσ for σ ∈ Sn.

4.Group Action:

Let G be a group and K be a field.Let G be acting on a finite set X ,that is
, G × X → X.We denote K[X]= f | f: X → K , set of all maps.Then K[X] is
a vector space of dimension | X |.
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The elements ex : X → K from a basis of K[X]. The action give rise to
a representation of G on the space K[X], as follows: ρ : G→ GL(K[X]) given
by

ρ(g)(f) (x) = f(g−1x) for x ∈ X.

DEFINITION 1.3:

Let G be a group and K be a field.Let V be a vector space over K.Then
ρ (g) = 1 for all g ∈ G is a representation.This is called trivial representa-
tion.In this case , every subspace of V ia an invariant subspace.

DEFINITION 1.4:

REGULAR REPRESENTATION:

Let G be a group of order n and K be a field.Let V = K[G] be an n di-
mensional vector space with basis as elements of the group itself.We define
L: G→ GL(K[G]) by L(g)(h) = gh called the left regular representation.Also
, R(g)(h) defines right regular representation of G.

DEFINITION 1.5:

EQUIVALENCE OF REPRESENTATIONS:

Let (ρ , V) and (ρ
′

, V
′
) be two representations of G.The representations

(ρ , V) and (ρ
′

, V
′
) are called G - equivalent or equivalent if there exist a

linear isomorphism T : V → V
′

such that

ρ
′
(g) = Tρ(g)T−1 ∀ g ∈ G.

NOTE:

Let ρ be a representation.Fix a basis say, e1, e2.......en.Then ρ gives rise to a
map G→ GLn(k) which is a group homorphism.If we change the basis of V,
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then we get a different map for the same ρ.

DEFINITION 1.6:

COMMUTATOR GROUP:

Let G be a group.Consider the set of elements {xyx−1y−1| x,y ∈ G} and
G=1be the subgroup generated by this subset.This subgroup is called the
commutator subgroup of G.

DEFINITION 1.7:

ONE DIMENSIONAL REPRESENTATION:

Let G be the set of all one-dimensional representation of G over C.That
is , the set of all group homomorphism from G to C∗.

For x1, x2 ∈ G , we define multiplication by

(x1x2) (g) = x1(g) x2(g)

RESULTS:

1. The trivial representation is irreducible iff it is one-dimensional.

2. One-dimensional representation is always irreducible.

3. If | G | ≥ 2, then the regular representation is not irreducible.

4. G is an abelian group.
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Chapter 2

MASCHKE’S THEOREM

DEFINITION 2.1

IRREDUCIBLE REPRESENTATION:

A representation (ρ , V) is called irreducible if it has no proper invariant
subspace , ie, only invariant subspaces are 0 and V.

NOTE:

Let (ρ , V) and (ρ
′
,V

′
) be two representations of G over the field K.Then the

direct sum of these two representations (ρ ⊕ ρ′
, V ⊕ V

′
) is defined as follows:

ρ ⊕ ρ
′

: GL (V ⊕ V
′
) such that

(ρ ⊕ ρ
′
) g(V , V

′
) = (ρ (g)(v) , ρ

′
(g) (V

′
))

In the matrix notation , if we have two representations ρ :G → GLn(K)
and ρ

′
: G → GLm(K) , then ρ ⊕ ρ

′
is given by

g →
[
p(g) 0

0 p′(g)

]
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DEFINITION 2.2:

COMPLETELY REDUCIBLE:

A representation (ρ , V) is called completely reducible if it is a direct sum of
irreducible ones.Equivalently, V = W1 ⊕ .......⊕Wn , where Wi is G-invariant
irreducible representation.

DEFINITION 2.3:

An endomorphism π : V → V is called a projection if π2 = π.

LEMMA 1:

Let π be an endomorphism.Then π is a projection iff there exists a decom-
position V = W ⊕ W

′
such that π(w) = 0 and π (w

′
) = W

′
and π restricted

to W
′

is identity.

PROOF:

Let π : V → V such that π (W , W
′
) = W

′
.

Then clearly π2 = π.

⇒ π is a projection.

Suppose that π is a projection.

We claim that V = ker (π) ⊕ img (π).

Let x ∈ ker (π) ∩ img (π).Then ∃ y ∈ V such that π (y) = x.

x = π(y) = π2 (y) (since π is a projection)

= π(π(x)) = π (0) = 0.
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therefore , ker (π) ∩ img (π) = 0.

Let v ∈ V.Then v = (v - π(v)) + π(v)

We have π(v) ∈ im(π) and v - π(v) ∈ ker (π)

since π (v - π(v)) = π(v) - π2(v) = π(v) - π(v) = 0

Now let x ∈ im (π)

x = π (y)

Then π(x) = π(π(y)) = π2 (y) = π (y) = x.

⇒ π restricted to im(x) is identity.

Hence the proof.

MASCHKE’S THEOREM:

Let K be a field and G be a finite group.Suppose that the characteristics
of K does not divide | G |. ie, | G | is invertible in the field K.Let (ρ , V) be
a finite dimensional representation of G.Let W be a G-invariant subspace of
V.Then ∃ W

′
a G-invariant subspace such that V = W ⊕ W

′
.

Proof

Let ρ : G → GL(V) be a representation.Let W be invariant subspace of
V.

Let W0 be a complement ie, V = W0 ⊕ W.

We want to find a complement which is G-invariant.

Let π be a projection corresponding to this decomposition.

ie, π(w0) = 0 and π(w) = W, ∀ w ∈ W.
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Define an endomorphism π
′

: V → V by averaging technique as follows

π
′

= 1
|G|
∑

ρ(t)−1 π ρ(t)

We claim π
′

is a projection.

Now π
′
(v) ⊂ W since π ρ(t)(v) ⊂ W and W is G-invariant.

π
′
(w) = w ∀ w ∈ W.

π
′
(w) = 1

|G|
∑

ρ(t−1) π ρ(t)(w)

= 1
|G|
∑

ρ(t−1) π (ρ(t)(w))

= 1
|G|
∑

w

= w. [since ρ(t)(w) ∈ W and π takes it to itself].

Let v ∈ V , then π
′

(v) ∈ W

Hence π
′2 (v) = π

′
(π

′
(v) = π

′
(v).

as we have π
′
(v) ∈W and π

′
takes any element of W to itself . Hence π

′
= π

′
.

Now we write decomposition of V with respect to π
′

, say V = W
′ ⊕ W

where W
′

= ker (π
′
) and W = im (π

′
)

We claim that W
′

is G-invariant which will prove the theorem.For this as-
sume that π

′
is a G-invariant homomorphism

ie , π
′
(ρ (g)(v) = ρ (g)(π

′
(v)) ∀ g ∈ G and v ∈ V.

π
′
(ρ(g)(v)) = 1

|G|
∑

ρ(t)−1 ρ(t) (ρ(g)(v))

= 1
|G|
∑

ρ(g) ρ(g)−1 ρ(t)−1 π ρ(t) (ρ(g)(v))

15



= ρ(g) 1
|G| ρ(tg)−1 π ρ(tg) (v)

= ρ(g) (π
′

(v))

Therefore W
′

is G-invariant.

Let w
′ ∈ W

′
. We have to show that ρ(g)(w

′
) ∈ W

′
.

π
′

(ρ(g)(w
′
)) = ρ (g)(π

′
(w

′
)) = ρ (g)(0) = 0

Therefore W
′

is an invariant compliment of W.

Hence the theorem.

‘
PREPOSITION:

Let K be a field and G be a finite group with characteristics of K does
not divide —G—. Then every finite dimensional representation of G is com-
pletely reducible.

PROOF:

Let ρ : G → GL(V) be a representation.

We use induction on the dimension of V to prove this.

Let dim(V) = 1.

It is easy to verify that one-dimensional representation is always irreducible.Let
V be of dimension n ≥ 2.

If V is reducible we have nothing to prove.So we assume that V has a G-
invariant proper subspace , say W with 1 ≤ dim(V) ≤ n-1.

By Maschke’s theorem we can write V = W ⊕ W
′

, where W
′

is also G-
invariant.But dim(W) and dim(W

′
) are less than n.
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Therefore , by induction hypothesis they can be written as direct sum of
irreducible representations.

DEFINITION 2.4:

G-MAP:

Let (ρ , V) and (ρ
′

, V) be two representations of G over the field K.A
linear map T:V → V

′
is called a G-map (between 2 representations) if it

satisfies the following

ρ
′
(t)T = T ρ(t) ∀ t ∈ G.

The G-maps are also called interwiners.

SCHUR’S LEMMA:

Let (ρ , V) and (ρ
′
, V) be two irreducible representations of G (of dimension

≥ 1). Let T : V→ V
′
be a G-map.Then either T = 0 or T is an isomorphism.

Moreover if it is non-zero , then T is an isomorphism if and only if the two
representations are equivalent.

PROOF:

Let us consider the subspace ker(T).

We claim that it is a G-invariant subspace of V.

For this let v ∈ ker(T).

Then T ρ(t)(v) = ρ
′

(t) T(v) = 0

⇒ ρ (t) (v) ∈ ker(T) ∀ t ∈ G

By applying Maschke’s theorem on the irreducible representation V , we
get either ker(T) = 0 or ker(T) = V.
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In the case ker(T) = V , the map T = 0.

Therefore we may assume that ker(T) = 0. ie, T is injective.

Npw consider the subspace im(T) ⊂ V
′
.We claim that im(T) ⊂ V

′
is also

G-invariant.

For this let y = T(x) ∈ im(T).

Then ρ
′

(t) y = ρ
′

(t) T(x) = T ρ(t) T(x) ∈ im(T) ∀ t ∈ G.

Hence im(T) is G-invariant.

Again by applying Maschke’s theorem for irreducible representation V
′

we
get either im(T) = 0 or im(T) = V

′
, which proves that T is an isomorphism.

COROLLORY:

Let (ρ , V) be an irreducible representation of G over C. Let T : V → V
be a G-map.Then T = λId for some λ ∈ C and Id is the identity map on V.

PROOF:

Let λ be an eigen value of T corresponding to the eigen vector of v ∈ V
ie, T(v) λv

Consider the subspace W = ker(T - λ Id) . We claim that W is a G-invariant
subspace.

Since T and scalar mutiplications are G-maps so is T-λ. Hence, the ker-
nal is G-invariant (by schur’s lemma).

Since, W 6= 0 and is G-invariant , by Maschke’s theorem W = V

⇒ T = λ Id.
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Chapter 3

REPRESENTATION
THEORY OF FINITE
ABELIAN GROUP OVER C

PREPOSITION:

Let K = C and G be a finite abelian group. Let (ρ , V) be ab irreducible
representation of G. Then dim(V) = 1.

PREPOSITION:

Let K = C and G be a finite abelian group. Let ρ : G → GL(V) be a
representation of dimension n. Then we can choose a basis of V such that ρ
(G) is contained in diagonal matrices.

PROOF:

Since V is a representation of finite group, we can write V as a direct sum
of G-invariant irreducible ones by Maschke’s theorem. ie, V = W1 ⊕ W2

⊕.......⊕ Wr.

Using Schur’s lemma, we can conclude that dim(Wi) = 1 ∀ i and hence
we get r = n. By choosing a vector in each Wi we get the required result.
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COROLLORY:

Let G be a finite group. Let ρ : G → GL(V) be a representation. Let g
∈ G. Then there exists a basis of V such that the matrix of ρ(g) is diagonal.

PROOF:

Consider H = ¡g¿ ⊂ G and ρ : H → GL(V) the restriction map.Since H is
abelian , we can simultaneously diaganalise elements of H.[Using the prepo-
sition ” Let K = C and G be a finite abelian group. Let ρ : G → GL(V) be
a representation of dimension n. Then we can choose a basis of V such that
ρ(V) is contained in diagonal matrices.”] This proves the required result.

THEOREM:

Let G be a finite group.Every irreducible representation of G over C is one-
dimensional iff G is an abelian group.

PROOF:

Let all irreducible representation of G over C be of dimension one. Con-
sider the regular representation ρ : G → GL(V) where V = C[G].

We have if —G— ≥ 2 this representation is reducible and is an injective
map.

Using Maschke’s theorem , we can write V as a direct sum of irreducible
ones and they are given to be of dimension 1.

Therefore ∃ a basisi V1, V2, .....Vn of V such that subspace generated by each
basis vectors are invariant.Therefore ρ(G) consist of diagonal matrices with
respect to this basis which is an abelian group.

Hence G ∼= ρ(G) is an abelian group.
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DEFINITION 3.1:

SUBREPRESENTATIONS:

If we have a representation (ρ , V) and W is a G-invariant subspace , then
we can define a subrepresentation (ρ , W) by ρ(t)(w) = ρ(t)(w)

DEFINITION 3.2:

ADJOINT REPRESENTATION:

Let ρ : G → GL(V) be a representation.We define the adjoint represen-
tation (ρ∗ , V∗) as follows: ρ∗ : G → GL(V∗) where ρ∗ (g) = ρ (g−1)∗

NOTE:
‘
Let V be a vector space over K with a basis e1, e2, ...., en . A linear map f
: V → K is called a linear functional.We denote V∗ = (V,K) , the set of all
linear functionals.

We define operations on V∗ : (f1 + f2) (v) = f1(v) + f2(v) and (λf) (v)
= λf(V) and it becomes a vector space . The vector space V∗ is called dual
space of V.

DEFINITION 3.3:

Let V and V
′
be two vector space over K.Tensor product of two vector spaces

V and V
′

is a vector space V ⊗ V
′

= {
∑

r
i=1 Vi ⊗ V

′
i / Vi ∈ V , V

′
i ∈ V

′ }
with the following properties

1.
∑

r
i=1 (Vi ⊗ V

′
i ) +

∑
s
i=1 (Wi ⊗ W

′
i ) = V1 ⊗ V

′
1 + .... + Vr ⊗ V

′
r+

W1 ⊗ W
′
1 +....+ Ws ⊗ W

′
s.

2. (V1 + V2) ⊗ V
′

= V ⊗ V
′
1 + V ⊗ V

′
2

V ⊗ (V
′
1 + V

′
2 ) = V ⊗ V

′
1 + V ⊗ V

′
2

3. λ
∑

r
i=1 (Vi ⊗ V

′
i ) =

∑
r
i=1 λ Vi ⊗ V

′
i =

∑
r
i=1 Vi ⊗ λ V

′
i
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NOTE:

If (ρ , V) is a representation of G , then V⊗n = V⊗ V⊗......⊗V, symnV,
λn(V) are also representations of G. ie, Starting from one representation we
get many representations.If we start from an irreducible representation the
above constructed representations need not be irreducible,but they often con-
tain other irreducible representations.

Direct sum decomposition of tensor representation is an important topic
of study. It happens that we need much smaller number of representations
(called fundamental representations) of which tensor product contains all ir-
reducible representations

Let (ρ , V) be a representation of the group G. Let H be a subgroup. Then
(ρ , V) is a representation of H denoted as (ρH , V).

Let N be a normal subgroup of G.Then any representation of G—N gives
rise to a representation of G. Moreover , if the representation of G—N is
irreducible , then the representation of G remains irreducible.(Restriction of
representations).
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Chapter 4

CHARACTER THEORY

DEFINITION 4.1:

Let CG , space of all complex valued functions on G which is a vector space
of dimension —G—. We define the inner product as

<,> : CG × CG → C by <f1 , f2> = 1
|G|
∑

f1(t) f2(t)

DEFINITION 4.2:

Let (ρ, V) be a representation of G.The character of (corresponding to) ρ
is a map χ : G → C defined by χ(t) = tr(ρ(t)) , where tr is the trace of
corresponding matrix

DEFINITION 4.3:

A function f : G → C is called a class function if f is constant on the
conjugacy classes of G. We denote the set of class functions on G by

′
H.

DEFINITION 4.4:

Let G be a finite group.Let W1, W2......Wh be irreducible representations
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of G of dimension n1,n2.....nh over C. Let χ1 , χ2,.....χh are corresponding
characters called irreducible characters of G.

THEOREM:

Let χ be a character of representation (ρ , V) . Then <χ , χ> is a posi-
tive integer and <χ χ> = 1 iff V is irreducible.

DEFINITION 4.5:

Let G be a finite group and χ1 , χ2,......χh be the irreducible characters
of dimension n1 , n2......nh respectively.Let L be the left regular representa-
tion of G with corresponding character l.

LEMMA:

Let f ∈ ′
H be a class function on G. Let (ρ , V) be an irreducible repre-

sentation of G of degree n with character χ. Let us define ρf =
∑

f(t) ρ(t) .

Then ρf = λ Id where λ = |G|
n
< f , X >

PROOF:

We claim that ρf is a G-map and Schur’s lemma to prove this.

For any g ∈ G , we have

ρ(g) ρf ρ(g−1) =
∑

f(t) ρ(g) ρ(t) ρ(g−1)

=
∑

f(t) ρ(gtg−1)

=
∑

f(g−1sg) ρ(s)

= ρf
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Hence ρf is a G-map.

Therefore from Schur’s lemma , we get ρf = λ Id for some λ ∈ C.

Taking trace on both sides,

λ.n = tr(ρf )

=
∑

f(t) tr(ρ(t))

=
∑

f(t) χ(t)

= | G | 1
|G| f(t) χ(t−1)

= | G | < f , χ >

⇒ λ = |G|
n
< f , χ >
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APPLICATIONS
Ramanujan made many contributions to the theory of partitions.Hardy and
Ramanujan developed the circle method and published asymptotic formula
like p(n).The actual values of p(n) , for small n , are much smaller than the
asymptotic values.Representation theory especially of symmetric group plays
a role to provide easy but close lower bounds for p(n).

The Dedikind zeta function of an algebraic number field is an invariant which
plays an important role in density theorems for ramfication of primes like
Frobenius density theorem and the Chebychev’s density theorem.A simple
result from representation theory of finite groups provides a method to con-
struct non-isomorphic number fields with the same zeta function.This also
provides a footing to discuss and prove special cases of Dedikind’s conjucture.
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