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INTRODUCTION:

Number theory is that branch of mathematics that is concerned with the
properties of numbers. For this reason, number theory, which has a 4000
years of rich history, has traditionally been considered as pure mathematics.
The theory of numbers has always occupied a unique position in the world
of mathematics. This is due to unquestionable historical importance of the
subject. It is one of the few disciplines having demonstrable results that
predate the very idea of a university or an academy. The natural numbers
have been known to us for so long that mathematician Leopold Kronecker
once remarked, ” God created the natural numbers, and all the rest is the
work of man”. Far from being a gift from Heaven, number theory has a
long and sometimes painful evolution.

The theory of continued fractions begins with Rafael Bombelli, the last of
great algebraists of Renaissance Italy. In his L’Algebra Opera (1572) ,
Bombelli attempted to find square roots by using infinite continued
fractions. One of the main uses of continued fraction is to find the
approximate values of irrational numbers.

Srinivas Ramanujan has no rival in the history of mathematics. His
contribution to number theory is quite significant. G.H.Hardy, commenting
on Ramanujan’s work, said ”On this side (of Mathematics) most recently I
have never met his equal, and I can only compare him with Euler or
Jacobi”.

Pell’s equation x2 − dy2 = 1 ,was probably first studied in the case
x2 − 2y2 = 1 .Early mathematicians, upon discovering that

√
2is irrational,

realized that although one cannot solve the equation x2 − 2y2 = 0 in
integers,one can at least solve the ”next best things”. The early
investigators of Pell equation were the Indian mathematicians
Brahmagupta and Bhaskara. In particular Bhaskara studied Pell’s equation
for the values d = 8, 11, 32, 61 and 67 and Bhaskara found the solution
x = 1776319049, y = 2261590, for d = 61 .

Fermat was also interested in the Pell’s equation and worked out some of
the basic theories regarding Pell’s equation. It was Lagrange who
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discovered the complete theory of the equation,x2 − dy2 = 1 .Euler
mistakenly named the equation to John Pell. He did so apparently because
Pell was instrumental in writing a book containing these equations.
Brahmagupta has left us with this intriguing challenge: ”A person who can,
within a year, solve ,x2 − 92y2 = 1 is a mathematician.”

In general Pell’s equation is a Diophantine equation of the form
x2 − dy2 = 1 , where d is a positive non square integer and has a long
fascinating history and its applications are wide and Pell’s equation always
has the trivial solution (x, y) = (1, 0), and has infinite solutions and many
problems can be solved using Pell’s equation.
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Chapter 1

PRELIMINARIES:-

Definition 1.1 Divisibility :

If a and b are two integers, then we say that a divides b and we write a | b if
b = aK for some integer K.

Definition 1.2 Division Algorithm:

Given two integers a and b with b > 0 , there exists unique integers q and
r satisfying

a = qb + r ,0 ≤ r < b

The integers q and r are called quotient and remainder respectively in the
division of a by b.

Definition 1.3 Greatest Common Divisor:

The greatest common divisor (m,n) of integers m and n is the largest in-
teger which divides both m and n.

• Given integers a and b, not both of which are zero, then there exist
integers x and y such that

d = (a, b) = ax + by

• Euclid lemma: If (a, b) = 1 and a | bc , then a | c
• m and n are relatively prime if (m,n) = 1

3



Euclidean Algorithm:

The Euclidean algorithm used to find the gcd of two integers, is the re-
peated application of division algorithm, starting with the numbers a and b
, and terminating when a remainder of 0 occurs.

In general the Euclidean algorithm runs as follows:

a=bq1+r1 ,0 ≤ r1 < b

b=r1q2+r2,0 ≤ r2 < r1

r1=r2q3+r3,0 ≤ r3 < r2

.

.

.
ri=ri+1qi+2+ri+2,0 ≤ ri+2 < ri+1

.

.

.
rn−2=rn−1qn+rn,0 ≤ rn < rn−1

rn−1=rnqn+1+0

Hence rn = (a, b)

EXAMPLE:
To calculate d = (1492, 1066) we have

1492=1×1066+426
1066=2×426+214
426=1×214+212
212=106×2+0

The last non zero remainder is 2. So d = 2

4



Linear Diophantine Equation:

A linear equation which is to be solved for integers is called a Diophan-
tine equation. The linear Diophantine equation of the form ax + by = c has
solution if and only if (a, b) | c . Let a, b ∈ Z.Consider the linear Diophantine
equation ax + by = c.

a) If (a, b) - c ,there are no solutions.

b)If (a, b) | c ,there are infinitely many solutions of the form

x = b
d
k + x0

y = a
d
k + y0

where (x0,y0) is a particular solution and k ∈ Z

EXAMPLE:
6x+9y=21
since (6,9)=3 , 3|2 there are infinitely many solutions. By trial and error we
find that, x=-7, y=7 is a particular solution.

Hence the general solution is given by

x=3k-7 , y=-2k+7 ; k ∈ Z

Prime number:

An integer p is called a prime number if its only positive divisors are 1 and p.

• An integer greater than 1 that is not a prime is termed as composite
.

Fundamental Theorem of Arithmetic:

Every positive integern > 1 can be expressed as a product of prime, this
representation is unique, apart from the order in which the factors occur,
that is n = p1p2...pn.
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? There exists infinitely many primes.

Proof:
Suppose that p1, p2, ..., pn were the only primes. Let M be the product of
these primes. Since M + 1 > 1 , then there exists a prime q , such that q |M
. Since(M,M + 1) = 1 , we know q - M . Therefore qneq = pi , for all i such
that 1 ≤ i ≤ n contrary to hypothesis. So there exist infinitely many primes.
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Chapter 2

CONTINUED FRACTIONS:-

Definition 2.1 Let m be a non-zero real number.We define the continued
fraction of m as follows

m = a0 + b0
a1+

b1
a
2+

b2
a
3+

b3...
.
..an−2+

bn−2
a

n−1+

bn−1
an

where the ai’s and bi’s may be non-negative reals or complex ,and a0 may
be zero.

• The numbers ai are called partial quotients of the continued fraction.

• A simple continued fraction is one whereall the ai’s are positive integers
with the exception of a0 which may be negative or zero and all the bi ’s equal
to one.

that is a0 + 1
a1+

1

a2
1

a3
1

...+... an−2+ 1

an−1+
1
an

If there exists such an at which the expansion terminates then it is called
finite simple continued fractionion or terminating continued fraction. Other-
wise it is said to be infinite.Denoted by [a0; a1, ..., an ]

7



EXAMPLE:1

Take the rational number be 47
17

47 = 2× 17 + 3

17 = 1× 13 + 4

13 = 3× 4 + 1

4 = 4× 1 + 0

47
17

= 2 + 1
1+ 1

3+1
4

= [2;1,3,4]

47
17

= 2 + 1
1+ 1

3+ 1

3+1
1

= [2;1,3,3,1]

So we noticed that the continued fraction expansion of a rational number
is not unique.

EXAMPLE:2
Take the rational number9

7
,

we can write it as a finite simple continued fraction as follows:-

9
7

= 1 + 2
7

= 1 + 1
7
2

= 1 + 1
3+ 1

2

= [1; 3, 2]
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Definition 2.2 For n ≤ m , cn = [a0; a1, ..., an] is called the nth convergent
of the continued fraction [a0; a1, ..., am]

Theorem 2.1 Let a0, a1, ..., an be positive real numbers.Let

p0 = a0, p1 = a1a0 + 1, p−1 = 1, pn = anpn−1 + pn−2

q0 = 1, q1 = a1, q−1 = 0, qn = anqn−1 + qn−2

Then the nthconvergent is given by cn = pn
qn

proof:

We proceed by induction. For n = 1,

[a0; a1] = a0 + 1
a1

= a1a0+1
a1

=a1p0+p−1

a1q0+q−1

=p1
q1

as desired.

Now, suppose the theorem holds for n.

[a0; ..., an+1] = [a0; ..., an−1, an + 1
an+1

]

=
(an+

1
an+1

)pn−1+pn−2

(an+
1

an+1
)qn−1+qn−2

= (an+1an+1)pn−1+an+1pn−2

(an+1an+1)qn−1+an+1qn−2

=an+1anpn−1+an+1pn−2+pn−1

an+1anqn−1+an+1qn−2+qn−1

9



=an+1(anpn−1+pn−2)+pn−1

an+1(anqn−1+qn−2)+qn−1

= an+1pn+pn−1

an+1qn+qn−1

=pn+1

qn+1

as desired.

EXAMPLE:

19
51

= [0; 2, 1, 2, 6]

p0 = 1, q0 = 1

p1 = 0× 2 + 1 = 1, q1 = 2

p2 = 1× 1 + 0 = 1, q2 = 1× 2 + 1 = 3

p3 = 2× 1 + 1 = 3, q3 = 2× 3 + 2 = 8

p4 = 6× 3 + 1 = 19, q4 = 6× 8 + 3 = 51

∴ c0 = p0
q0

= 0
2

= 0

c1 = p1
q1

= 1
2

c2 = p2
q2

= 1
3

c3 = p3
q3

= 3
8

c4 = p4
q4

= 19
51

10



Theorem 2.2 For 1 ≤ n ≤ m ,

If cn = pn
qn

is the nthconvergent of the finite simple continued fraction[ a0; a1, ..., an]

then

(1)pnqn−1 − pn−1qn = (−1)n−1; and

(2)pnqn−2 − pn−2qn = (−1)nan.

proof:-

(1) pnqn−1 − pn−1qn = (anpn−1 + pn−2)qn−1 − pn−1(anqn−1 + qn−2)

= pn−2qn−1 + anpn−1qn−1 − anpn−1qn−1 − pn−1qn−2

=(−1)(pn−1qn−2 − pn−2qn−1)

= ........

= (−1)n(p0q−1 − p−1q0)

= (−1)n(−1)

=(−1)
n+1

= (−1)n−1

as desired.

(2) pnqn−2 − pn−2qn = (anpn−1 + pn−2)qn−2 − (anqn−1 + qn−2)pn−2

= anpn−1qn−2 + pn−2qn−2 − pn−2qn−2 − anpn−2qn−1

=an(pn−1qn−2 − pn−2qn−1)

11



= (−1)n−2an

= (−1)nan

as desired.

COROLLARY:-

For 1 ≤ k ≤ n :pk, qn are relatively prime

proof:-

∵ there is a linear combination of pn and qn that is equal to ±1

If d= (pk, qk)

then d | (−1)k−1

∵ d > 0⇒ d = 1.

∴ pk, qn are relatively prime .

Now we will see how to solve the linear Diophantine equation
ax + by = c using continued fraction.

Since, no solution of this equation exists ifd - c , whered = (a, b) , so there
is no harm in assuming that d | c.

For;

if (a, b) = d > 1 then a
d
x + b

d
y = c

d
.

Both equations have the same solution and in the latter case, we know that
(a
d
, b
d
) = 1 .

Notice that a solution of the equation ax + by = c with d = (a, b) may be
obtained by solving first the Diophantine equation ax+by = 1 with (a, b) = 1

12



If integer x0 and y0 can be found for which ax0 + by0 = 1 , then multi-
plying both sides by c we get,

a(cx0) + b(cy0) = c

Hence cx0 = x and cy0 = y is the solution of ax + by = c

To find a pair of integers xandy satisfying the equation ax + by =
1 , we have to find the simple continued fraction expansion of the
rational number a

b
where ,a

b
= [a0; a1, ..., an ]

The last two convergents of this continued fraction are

cn−1 = pn−1

qn−1

cn = pn
qn

= a
b

As (pn,qn) = (a, b)

we have pn = a and qn = b

Then pnqn−1 − pn−1qn = (−1)n−1

=⇒ aqn−1 − pn−1b = (−1)n−1

Thus with x = qn−1 and y = −pn−1

So ax + by = (−1)n−1

If n is odd ,then ax + by = 1 has particular solution
x0 = qn−1 and y0 = −pn−1
If n is even ,then ax + by = 1 has particular solution
x0 = −qn−1 and y0 = pn−1

and the general solution is
x = x0 + bt ,y = y0 − at ;t = ±1,±2, ...

13



EXAMPLE:-

solve the linear Diophantine equation

172x + 20y = 1000

by using simple continued fraction.

We have,(172, 20) = 4

172x + 20y = 1000

=⇒ 43x + 5y = 250
Firstly we have to find a particular solution to 43x + 5y = 250
43

5
= [8; 1, 1, 2]

The convergent are
c0 = 8

1
, c1 = 9

1
, c2 = 17

2
, c3 = 43

5

p2 = 17,p3 = 43

q2 = 2,q2 = 5

Now p3q2 − q3p2 = (−1)3−1

=⇒ 43× 2− 5× 17 = 1

multiplying both sides by 250, we get
43× 500 + 5(−4250) = 250

So, the particular solution is given by x0 = 500, y0 = (−4250)
and the general solution is given by x = 500 + 5t , y = −4250 − 43t
;t = 0,±1,±2±, ...

14



Periodic Continued Fraction:-

√
2 = 1 + 1

1+
√
2

= 1 + 1
2+ 1

1+
√

2

= 1 + 1
2+ 1

2+ 1
2+...

∴
√

2 = [1; 2, 2, 2, , ...] = [1; 2]

√
3 = [1; 1, 2]

Here we see that partial quotients 2 and 1, 2 repeat indefinitely, such frac-
tions are called periodic.

We write a periodic continued fraction as, [a0; a1, ..., am, b1, b2, ..., bn, ...] =
[a0; a1, ..., am, b1, b2, ..., bn]

Here b1, b2, ..., bn, is the period of the expansion and the length of the
period is n .

EXAMPLE:-

√
14 = [3; 1, 2, 1, 6], is a continued fraction whose period 1,2,1,6 has length 4.

NOTE:-

If[a0; a1, ...]is an infinite continued fraction with positive terms, then its
value is an irrational number.
Every irrational number x has a unique infinite continued fraction [a0; a1, ...]
expansion whose terms are given recursively by

x0 = x and ak = [xk] ,xk+1 =
1

xk − ak
,k ≥ 0

15



EXAMPLE:-

x =
√

23 ≈ 4.8

x0 = 4 + (
√

23− 4) ; a0 = 4

x1 = 1
x0−[x0]

= 1 +
√
23−3
7

; a1 = 1

x2 = 1
x1−[x1]

= 3 +
√
23−4
2

; a2 = 3

x3 = 1
x2−[x2]

= 1 +
√
23−3
2

; a3 = 1

x4 = 1
x3−[x3]

= 8 + (
√

23− 4) ; a4 = 8

So
√

23 = [4; 1, 3, 1, 8]

16



Chapter 3

PELL’S EQUATION:-

John Pell (1611-1685) was an English mathematician who taught mathe-
matics in Holland, at the universities of Amsterdam and Breda in 1640s.
Pell’s equation has a long fascinating history. Its first recorded appearance
is in the cattle problem of Archimedes. This problem involves eight different
kinds of cattle and ask the reader to determine how many there are of each
kind. After facing a lot of problems it finally reduced to solving the Pell’s
equation X2 − 4729494Y 2 = 1 . The first significant progress in solving the
Pell’s equation was made in India as early as A.D. 628, by Brahmagupta.
Brahmagupta described how to use the known solution to a Pell’s equation
to create new solutions and Bhaskaracharya in 1150 A.D. gave a method of
solving Pell’s equation. The modern European history of Pell’s equation be-
gins in 1657 when Fermat challenged his fellow mathematician to solve the
equation X2 − 61Y 2 = 1 several of them found the smallest solution, which
was (X, Y ) = (1766319049, 226153980) and William Brouncker in described
a general method for solving Pell’s equation. Brouncker found the solution
(32188120829134849, 181938015856410).

J. Wallis described Brounckers method in a book on algebra and number
theory and Wallis and Fermat both asserted that the Pell’s equation always
has a solution. Euler mistakenly thought that the method in Wallis book
was due to John Pell, and so Euler assigned the equation the name Pell’s
equation. But John Pell has nothing to do with the so called Pell’s equation
.

17



Definition 3.1 The quadratic Diophantine equation of the form x2− dy2 =
±1 where d is a positive square free integer is called a Pell’s equation.

Problems leading to Pell’s equation:

One of the main reasons for the popularity of Pell’s equation is the fact
that many natural questions that one might ask about integer’s leads to a
quadratic equation in two variables, which can be casted as a Pell’s equation .

Square Triangular Numbers:

The numbers which can be arranged in a shape of triangle is called tri-
angular numbers, whereas the numbers which can be arranged in a shape of
square are called square numbers.

The mth triangular number is = m(m+1)
2

and the nth square number = n2

We observe that the sum of two adjacent triangular numbers is square.

But what about the case when an individual triangular number is square?

So, the square triangular numbers are solution to the equation

18



n2 = m(m+1)
2

,m, n ∈ Z+

Multiplying both sides by 8 we get

8n2 = 4m2 + 4m

= (2m + 1)2 − 1

Leting x = 2m + 1 ,y = 2n , we have

2y2 = x2 − 1

=⇒ x2 − 2y2 = 1

Solution to x2 − 2y2 = 1 gives square-triangular numbers with m = x−1
2

and n = y
2

BRAHMAGUPTA’S METHOD:

nx2 + 1 = y2 (Pell’s equations) leading to y2 − nx2 = 1

Identify:- (b2 − na2)(d2 − nc2) = (bd± nac)2 − n(bc± ad)2

From this we observe that if (b2 − na2) and (d2 − nc2) are both 1, then
(bd ± nac)2 − n(bc ± ad)2 = 1 , i.e. if (a, b) and(c, d) are solution to pell
equation then (bc± ad, bd± nac) is also a solution.

19



Brahmagupta’s Lemma:-

If(a, b) and (c, d) are integer solution of pell type equation of the form na2 +
k = b2 and nc2 + k′ = d2 , then (bc± ad, bd± nac) are both integer solution
of Pell type equation nx2 + kk′ = y2 , using the method of composition, if
(a, b) satisfies pell’s equation, then so does (2ab, b2+na2) which is obtained by
composing (a, b) with itself. Another solution can be obtained by composing
(a, b) with (2ab, b2 + na2) .

SOLVING PELL’S EQUATION USING BRAHMAGUPHA’S METHOD:-

By Brahmagupta’s lemma if (a, b) is solution of nx2 + k = y2 ,

then composing (a, b) with itself gives us (2ab, b2 + na2) as a solution of
nx2 + k = y2 and dividing by k ,we get

x = 2ab
k

and y = b2+na2

k

Which is a solution to the Pell’s equation nx2 + 1 = y2 .

For most values of k this idea is not helpful because x, y are not integers,
but when k is ±1,±2, or ± 4 this idea helps a lot.

When k = 2 , as (a, b) is solution of nx2 + k = y2 then, na2 = b2 − 2 ,
so,x = 2ab

2
= ab , y = b2+na2

2
= b2+b2−2

2
= 2b2−2

2
= b2 − 1 .

For k = −2 ,na2 = b2 + 2 and x = 2ab
−2 ,y = b2+b2+2

2
= −b2 − 1 .

For k = 4,−4 ,we can get solutions to the Pell’s equation by method of
composing, but it’s too much complicated. So Brahmagupta was able to
show that if we can find (a, b) which nearly satisfies Pell’s equation in the
sense na2 + k = b2 where k = ±1,±2,±4 then we can find many integer

20



solutions to Pell’s equation.

EXAMPLE:-
Brahmagupta’s solution of the Pell’s equation

83x2 + 1 = y2

Here a = 1 , b = 9 satisfy the equation 83× 12 − 2 = 92.

So applying the above method, we find that,

x = 2ab
k

and y = b2+na2

k

, is a solution to 83x2 + 1 = y2

i.e; x = 2×9
2

= 9 , y = 81+83×1
2

= 82

i.e; (9, 82) is a solution.

Applying method of composition to (9, 82) and (9, 82)
we get (2× 9× 82, 82× 82 + 83× 81) = (1476, 13447)

Again applying method of composition to (9, 82) and (1476, 13447) . we
have,
x = 9× 13447 + 82× 1476 = 242055
y = 82× 13447 + 83× 9× 1476 = 2205226 .

By applying again and again the method of composition, we can generate
further solutions (x, y).
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Results on Pell’s Equation:-

The Pell equation is a Diophantine equation of the form x2 − dy2 = 1 .
Given d , we want to find all integer pairs (x, y) that satisfy the equation.
Since any solution (x, y) yields multiple solution (±x,±y) , we restrict our-
selves to those solutions where x and y are positive integers.

We generally take d to be a positive non-square integer; otherwise there
are only uninteresting solutions. If d < 0 , then (x, y) = (±1, 0) , in the
case d < −1 and (x, y) = (0,±1) or (±1, 0) in the case d = −1, if d = 0 ,
then x = ±1 (y arbitrary) and if d is non zero square ,then dy2 and x2 are
consecutive squares, implying that (x, y) = (±1, 0) .

Notice that the Pell equation always has the trivial solution (x, y) = (1, 0)

The following result is well known:
Ifpn

qn
as the nth converget to the irrational number x ,

then | x− pn
qn
|< 1

qn+1qn
< 1

qn2

Theorem 3.1 If p
q

is a convergent of the continued fraction expansion of√
d then,x = p, y = q is a solution of the equation x2 − dy2 = k where
| k |< 1 + 2

√
d

PROOF:- If p
q

is a convergent of
√
d ,then

|
√
d− p

q
|< 1

q2

∴| p− q
√
d |< 1

q

Now | p + q
√
d |

=| (p− q
√
d) + 2q

√
d |≤| p− q

√
d | + | 2q

√
d |< 1

q
+ 2q
√
d < (1 + 2

√
d)q

These two inequalities combine to yield
| p2 − dq2 |=| p− q

√
d || p + q

√
d |< 1

q
(1 + 2

√
d)q = 1 + 2

√
d

22



EXAMPLE:-
Let d = 7√

7 = [2; 1, 1, 1, 4]
The first two convergent of

√
7 are 2

1
, 3
1
, 5
2
, ...

Now calculating pn
2 − 7qn

2 , we find that
227× 12 = −3
327× 12 = 2
527× 22 = −3
827× 32 = 1
Hence x = 8, y = 3 , provides a positive solution of x2 − 7y2 = 1

? If d is a positive integer that is not a perfect square, then the continued
fraction expansion of

√
d necessarily has the form

√
d = [a0; a1, a2, a3, ...., a3, a2, a1, 2a0]

.

EXAMPLE:-√
19 = [4; 2, 1, 3, 1, 2, 8]

√
73 = [8; 1, 1, 5, 5, 1, 1, 16]

?
If the length of the period of the continued fraction expansion of

√
d is

n then the fundamental solution of the equation x2 − dy2 = 1 is given by
x = pn−1, y = qn−1 when n is even and by x = p2n−1, y = q2n−1 when n is odd.

Finding the fundamental solution may become a difficult task, as the value
of the fundamental solution may be very large, even for comparatively small
values of d .

For example the equation x2 − 991y2 = 1 has the fundamental solution x =
379516400906811930638014896080 , and y = 12055735790331359447442538767.

The solution is even worse with x2 − 1000099y2 = 1 , where the smallest
positive integer has 1118 digits.
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So, everything depends upon the continued fraction expansion of
√
d and

in case of
√

1000099, the period has 2174terms.

There might be possibilities that the solution of x2−dy2 = 1 may be
small for a given value of d and very large for succeeding values of d.

For example the equation x2 − 67y2 = 1, whose fundamental solution is
given by , x = 48842 ,5967

But with the case d = 66 where the solution is x == 65 and y = 8

And with d = 68 ,where the solution is x = 33 ,y = 4

? From any solution of x2 − dy2 = 1, we can obtain infinitely many solu-
tions.

Let (x1, y1) be a solution of x2 − dy2 = 1 . Then we can generate another
solution by the following process:

x2
1 − dy21 = 1

(x1 + y1
√
d)(x1 − y1

√
d) = 1

(x1 + y1
√
d)2(x1 − y1

√
d)2 = 1

(x2
1 + 2x1y1

√
d + dy21)(x2

1 − 2x1y1
√
d + dy21) = 1

(x2
1 + dy21 + 2x1y1

√
d)(x2

1 + dy21 − 2x1y1
√
d) = 1

(x2
1 + dy21)2 − d(2x1y1)

2 = 1

We see that we have got a equation which is nothing but a Pells Equation
and (x2

1 + dy21, 2x1y1) is a solution. Applying the process repeatedly we can
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get as many solution as we desire.

Alternatively, suppose we consider integer powers of (x1 + y1
√
d)

(x1 + y1
√
d)n = xn

1 +
(
n
1

)√
dxn−1

1 +
(
n
2

)
dxn−2

1 y21 +
(
n
3

)
d

3
2xn−3

1 y31 + ...+ d
n
2 yn1

=(xn
1 +

(
n
2

)
dxn−2

1 y21 + ....) +
√
d(
(
n
1

)
xn−1
1 +

(
n
3

)
xn−3
1 y31 + ...)

= xn + ynd

Theorem 3.2 Let (x1, y1) be the fundamental solution of x2−dy2 = 1 .Then
every pair of integers (xn, yn) defined by the condition
xn + yn

√
d = (x1 − y1

√
d)n , is also a positive solution, n = 1, 2, 3, ....

PROOF:-

xn + yn
√
d = (x1 − y1

√
d)n

Further, because x1 and y1 are positive xn and yn are both positive inte-
gers. Since is a solution of x2 − dy2 = 1, we have
x2
n − dy2n = (xn + yn

√
d)(xn − yn

√
d) = (x1 + y1

√
d)n(x1 − yn

√
d)n

= (x2
1 − dy21)n = 1

Hence (xn, yn) is a solution.

EXAMPLE:-
x2 − 35y2 = 1

x1 = 6, y1 = 1 forms the fundamental solution.
Now

x2 + y2
√

35 = (6 +
√

35)2 = 71 + 12
√

35

So, x2 = 71, y2 = 12

=⇒ (x2, y2)isasolution
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∵ 712 − 35× 122 = 5041− 5040 = 1

x3 + y3
√

35 = (6 +
√

35)3 = 846 + 143
√

35

So, x3 = 846, y3 = 143

=⇒ (x3, y3)isasolution
∵ 8462 − 35× 1432 = 715716− 715715 = 1

In this way we can generate infinitely many solutions.

? If (x1, y1) is the fundamental solution of x2 − dy2 = 1, then the solu-
tions (xn, yn) is also given by

xn = 1
2
(x1 + y1

√
d)n + 1

2
(x1 − y1

√
d)n

yn = 1
2
√
d
(x1 + y1

√
d)n − 1

2
√
d
(x1 − y1

√
d)n

Theorem 3.3 If x1 > 1 , y1 ≥ 1 and xn + yn
√
d = (x1 + y1

√
d)n, then

xn+1 > xn and yn+1 > yn for positive n

PROOF:-
We will prove this by induction, observe that
x2 = x2

1 + dy21 and y2 = 2x1y1

Since x1 > 1 , y1 ≥ 1 and d is a positive integer it is clear that x2 > x1

, y2 > y1.
So the result is true for n=1

Now assume the solution (xn, yn) with xn and yn positive integers greater
than 1. We have,
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(xn+1 + yn+1

√
d) = (x1 + y1

√
d)n+1

= (x1 + y1
√
d)(x1 + y1

√
d)n

= (x1 + y1
√
d)(xn + yn

√
d)

= (x1xn + dy1yn) + (x1yn + xny1)
√
d

∴ xn+1 = (x1xn + dy1yn)
and yn+1 = (x1yn + xny1)

We knowx1xn > xn and dy1yn > 0

=⇒ xn+1 = x1xn + dy1yn > xn

x1yn > y1 and xny1 > o

=⇒ yn+1 = x1yn + xny1 > yn

∴ We have xn+1 > xn and yn+1 > yn

Definition 3.2 Associated Pell’s Equation:

The equation x2 − dy2 = −1 is called associated Pells equation or, nega-
tive Pells equation.

Let t be the length of the period the continued fraction expansion of
√
d. If t

is even, then x2 − dy2 = −1 has no solution. If t is odd, then x2 − dy2 = −1
has infinitely many solutions and all given by
(xn, yn) = (p(2n−1)(t−1), q(2n−1)(t−1)).

Example:
Consider the equation x2 − 7y2 = −1
∵
√

7 = [2; 1, 1, 1, 4] so t = 4
∴ It has no solution.

Consider the equation x2 − 41y2 = −1

27



∵
√

41 = [6; 2, 2, 12] so t = 3

∴ it has solution . The first two such solutions are
(x1, y1) = (p2, q2) = (32, 5)
(x2, y2) = (p8, q8) = (131168, 20485)

Definition 3.3 Pell numbers:

The Pell number is defined by the recurrence relation

That is, the Pell numbers sequence starts with 0 and 1, and then each Pell
number is the sum of twice the previous Pell number and the Pell number
before that.

The first few terms of the sequence are 0, 1, 2, 5, 12 , 29 ,70, 169 , 408 ,985,
2378, ...

The Pell number can also be expressed by the closed form

pn = (1+
√
2)n−(1−

√
2)n

2
√
2

Definition 3.4 Pell prime:-
A Pell prime is a Pell number that is prime. The first few Pell primes are
2,5,29 . A Pell number can only be prime if itself is prime
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Definition 3.5 Pell-Lucas numbers:-

The Pell-Lucas numbers are defined by the recurrence relation

That is, the first two numbers in the sequence are both 2, and each
successive number in formed by adding twice the previous Pell-Lucas
number to the Pell-Lucas number before that, or, by adding the next Pell
number to the previous Pell number.

The first few terms of the sequence are 2,2,6,14,34,82,198,478.

The Pell-Lucas numbers can be expressed by the closed form
Qn = (1 +

√
2)n + (1−

√
2)n

The Pell-Lucas numbers are all even

Definition 3.6 Half companion Pell numbers:-(Hn)
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Chapter 4

APPLICATIONS OF PELL’S
EQUATION:-

1.Double equations:

Find t ∈ Z such that

10t + 9 = x2 and
5t + 4 = y2

Ans: We have t = x2−9
10

= y2−4
5

=⇒ 5(x
2−9
10

) + 4 = y2

=⇒ x2 − 2y2 = 1 which is a Pell’s equation with d = 2

Solutions are listed in the following table:-
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2. Rational approximation of square roots:-

We cannot write
√
d = x

y
, x, y ∈ Z,

√
d is irrational

But x2 − dy2 = 1

=⇒ x
y
2 = d + 1

y2
≈ d

so, Pell solutions lead to good rational approximation to
√
d .

EXAMPLE:-
fourth solution to x2 − 2y2 = 1 is (x, y) = (577, 408) and 577

408
= 1× 4142156

while
√

2 = 1.4142135

3. Sum of consecutive integers:-

EXAMPLE:-
1+2=3
1+2+3+...+14=15+16+...+20 In general,if we have
1 + 2 + ... + k = (k + 1) + ... + l,

then (1+k)k
2

= (k+1+l)(l−k)
2

2k2 + 2k = l2 + l
and 2((k + 1

2
)2 − 1

4
) = (l + 1

2
)2 − 1

4
which finally simplifies to

(2l + 1)2− 2(2K + 1)2 = −1 which is a associated Pells equation and can be
written as x2 − 2y2 = −1, x, y > 0 : x = 2l + 1, y = 2k + 1
x2 − 2y2 = −1,both x and y odd

so 1 + 2 + ... + 84 = 85 + ... + 119

Pythagorean triangle with consecutive legs like (3,4,5) ,(20,21,29)...:-

In general we are interested in solving m2 + (m + 1)2 = n2
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Clearly n2 is odd, so n is odd. 2m2 + 2m + 1 = n2

=⇒ 2(m2 + m) + 1 = n2

=⇒ 2((m + 1
2
)2 − 1

4
) + 1 = n2

which gives

(2m + 1)2 + 1 = 2n2

and finally (2m + 1)2 − 2n2 = −1

which is an associated Pells equation

So m2 + (m + 1)2 = n2 ⇐⇒ (2m + 1)2 − 2n2 = −1

The solutions are listed in the following table.

32 + 42 = 52

202 + 212 = 292

1192 + 1202 = 1692

Consecutive Heronian triangles:-

EXAMPLE:
The 3,4,5 right triangle has area 6

A =
√

s(s− a)(s− b)(s− c); s = a+b+c
2

Find Heronian triangle with consecutive sides a− 1, a, a+ 1 and thus s = 3a
2
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A2 = 3a
2
.a
2
.a+2

2
.a−2

2

=⇒ 4A2 = 3a2(a2 − 4)

So A2 = 3x2(x2 − 1)

unique factorization =⇒ x2 − 1 = 3y2

=⇒ x2 − 3y2 =2 ;a=2x and A=3xy

So, we have tri-
angles with sides 3,4,5( area=6);13,14,15 (area==84 ); 51,52,53(area=1170)
and so on.
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CONCLUSION:

Over the course of this project , we have investigated simple continued
fractions and explored an application of solving Pell’s equation.If p

q
is a

convergent of the continued fraction expansion of
√
d then,x = p, y = q is a

solution of the equation x2 − dy2 = k where | k |< 1 + 2
√
d
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