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INTRODUCTION

In abstract algebra, a free abelian group is an abelian group with a basis.
Being an abelian group means that it is a set with an addition operation
that is associative, commutative, and invertible. A basis is a subset such
that every element of the group can be found by adding or subtracting
basis elements, and such that every element’s expression as a linear
combination of basis elements is unique.
The elements of a free abelian group with basis B may be described in
several equivalent ways. These include formal sums over B, expressions of
the form

∑
aibi where each coefficient ai is a nonzero integer, each factor bi

is a distinct basis element, and the sum has finitely many terms.
Alternatively, the elements of a free abelian group may be thought of as
signed multisets containing finitely many elements of B, with the
multiplicity of an element in the multiset equal to its coefficient in the
formal sum. Also the free abelian group with basis B may be described by
a presentation with the elements of B as its generators and with the
commutators of pairs of members as its relators.

The free group F over a given set S consists of all expressions ( words, or
terms) that can be built from members of S, considering two expressions
different unless their equality follows from the group axioms. The members
of S are called generators of F. An arbitrary group G is called free if it is
isomorphic to F for some subset S of G, that is, if there is a subset S of G
such that every element of G can be written in one and only one way as a
product of finitely many elements of S and their inverses.
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Chapter 1

PRELIMARIES

Definition 1.1 GROUPS:

A group is an ordered pair (G,*) where G is a nonempty set and * is a
binary operation on G such that the following properties hold:
(1) for all a,b,c ∈ G ;a∗(b∗c)=(a∗b)∗c. (associative law.)
(2) there exist e∈G such that,for any a∈G, a∗e = a = e∗a. (existence of
identity).
(3) for each a∈G,there exist b∈G such that a∗b = e = b∗a. (existence of
inverse)

Examples
(Z,+): the integers with addition.
(R,+): the real numbers with addition.
(R*,×): the non-zero real numbers with multiplication.

Definition 1.2 ABELIAN GROUPS:

A group is called commutative or abelian if a∗b=b∗a for all a,b ∈ G.

Examples
(Z,+): the integers with addition.
(R,+): the real numbers with addition.
(R*,×): the non-zero real numbers with addition.
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Definition 1.3 QUOTIENT GROUPS:

Let G be a group and H be a subgroup of G, then the group G|H of all cosets
of H in G under the binary operation aH∗bH = abH is called the quotient
group of G by H.

Examples
Z6 | <3>
Z | 5Z

Definition 1.4 NORMAL SUBGROUPS:

Let G be a group.A subgroup H of G is said to be a normal subgroup of
G if aH = Ha for all a ∈ G.
Every subgroup of a commutative group is a normal subgroup.
A subgroup H of G is normal iff gng−1 ∈ N, ∀g ∈ G and n∈ N.

Definition 1.5 HOMOMORPHISM:

Let (G,∗) and (G1,∗1) be two groups and f is called a homomorphism of
G into G 1 if for all a,b ∈ G,
f(a∗b) = f(a) ∗ f(b)

Example
h:R−→ R+ is an example of homomorphism from the group (R,+) to the
group (R+,•)

Definition 1.6 MONOMORPHISM and EPIMORPHISM :

Let G and G 1 be two groups and f : G −→ G1 be a homorphism of groups.
Then,
(a) f is called a monomorphism if f is an injective function.
(b) f is called an epimorphism if f is a surjective function.
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Definition 1.7 ENDOMORPHISM:

An endomorphism is a homomorphism whose domain equals codomain.

Definition 1.8 ISOMORPHISM:

A homomorphism f from a group G to a group G1 is called an isomorphism
if the function f : G −→ G1 is a bijective function.A group G is said to be
isomorphic to a group G1 if there exist an isomorphism from G onto G1 and
we denote it by G∼=G1.

Definition 1.9 First Isomorphism Theorem:

Let f : G−→G1 be a homomorphism of groups. Then the quotient group
G | ker(f) is isomorphic to the subgroup Imf of G1 ,where the kernel of f and
Imf is the image of f.

Definition 1.10 TORSION GROUPS:

The torsion subgroup AT of an abelian group A is the subgroup of A consist-
ing of all elements of finite order. An abelian group A is called a torsion(or
periodic) group if evry element of A has a finite ordeer and is called torsion-
free if every element of A exept the identity is of inifinite order.

Definition 1.11 COMMUTATOR SUBGROUPS:

Let G be a group and a,b ∈ G. The element aba−1b−1 is called a commu-
tator of the group G. Let U= aba−1b−1 ; a,b ∈ G. If G1 is the subgroup of G
generated by U,then G1 is called the commutator subgroup of G.

Definition 1.12 Lagrange’s Theorem:

Lagranges theorem states that for any finite group G, the order (number of
elements) of every subgroup H of G divides the order of G.
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Definition 1.13 Sylow-p-subgroup:

Let G be any group with cardinality pmn where p is any prime and m,n
are any two positive integers such that p does not divide n. Let H be any
subgroup of G such that o(H)=pm, then H is called a sylow p subgroup of G.

Definition 1.14 First Sylow Theorm:

Let G be a finite group and | G | = pmn where m and n are any two positive
integers such that p does not divide n, then,
1. G contains a subgroup of order pi ; 1≤ i ≤ n
2. Every subgroup H of G of order pi is a normal subgroup of a subgroup of
order pi+1, where 1≤ i < n

Definition 1.15 WEAK DIRECT PRODUCT:

A weak direct product of a family of groups {Gi} i ∈ I is the subgroup of∏
Gi given by

∏
Gi := {(ai)i ∈ I|ai 6= ei ∈ Gi} for finitely many i only

If all groups Gi are abelian then
∏
Gi is denoted by ⊕Gi and it is called the

direct sum of {Gi}

5



Chapter 2

FREE ABELIAN GROUPS

DEFINITION.

A Free abelian group is an abelian group that has a basis in the sense that
every element of the group can be written in one and only one as a finite
linear combination of elements of the basis with integer coefficients.
Hence the free abelian groups over a basis B are also known as formal sums.

In other words,

A Z-basis for an abelian group A is a subset X of A with the following
properties.

∗ < X >= G i.e., every element a ∈ A may be written as a=Σx∈Xnx.x
where nx 6= 0 in Z and for finitely many x ∈ X
∗ X is Z-independent, i.e., for any collection of integers, {nx} such that only
finitely many are non-zero, i.e., we’ve
Σx∈Xnx.x = 0 =⇒ nx = 0, ∀x ∈ X.

And an abelian group G having an Z-basis is called a free abelian group.

Examples

1. The integers under the addition operation form a free abelian group
with the basis{1}. Every integer n is a linear combination of basis elements
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with integer coefficients, namely n=n∗1 with the coefficient n.Also each inte-
ger can be formed by using addition or substraction to combine some number
of copies of the number 1 and hence each integer has a unique representation
as an integer multiple of the number 1.

2. Integer lattice also forms a free abelian group.
The two-dimensional integer lattice consisting of the points in the plane with
integer cartesian coordinates form a free abelian group under vector addition
with the basis {(1,0) , (0,1)}

If we say e1=(1,0) and e2=(0,1),
then the element (9,7) can be written as
(9, 7) = 9e1 + 7e2.

where multipilication is defined so that
7e2 = e2 + e2 + e2 + e2 + e2 + e2 + e2

In this basis there is no other way to write (9,7)

But with different basis {(2,0) , (1,1)},
it can be written as
(9,7) = (2,0) + 7∗(1,1).

More generally every lattice forms a finitely generated free abelian group.
The d-dimensional integer lattice has a natural basis consisting of the posi-
tive integer unit vectors,but it has many other bases as well.
If M is a d×d integer matrix with determinant ±1, then the rows of M form
a basis and conversely every basis has this form.

3. The trivial group {0} is also considered to be free abelian,with basis
the empty set. It may be interpreted as a direct product of zero copies of Z.

PROPERTIES

∗ RANK of a free abelian group is defined to be the cardinality of the
basis of the free abelian group.
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Every 2 basis of the free abelian group have the same cardinality.

Also Free abelian groups of same rank are isomorphic

A free abelian group is finitely generated if and only if its rank is a finite
number n, in whhich case the group is isomorphic to Zn

∗ Direct product of two free abelian group is itself free abelian with basis
the disjoint union of basis of two groups.

More generally,the direct product of any finite number of free abelian
group is free abelian with basis the disjoint union of the basis of two groups.
But it need not be necessarilly true for infinite number of free abelian groups.

Theorem 2.1 Let X be the subset of non-zero abelian group G. then the
following conditions are equivalent

1. Each non-zero element a in G can be expressed uniquely in the form
a =n1x1 + n2x2 + .......+ nrxr. for ni 6= 0 in Z and distinct xi in X

2. X generates G and n1x1 + n2x2 + ....... + nrxr = 0 for ni in Z and
distinct xi ∈ X iff n1 =n2=.......nr= 0

Proof:
1=⇒ 2
Assume that any non-zero element a in G can be expressed uniquely as

a =n1x1 + n2x2 + .......+ nrxr.

for ni 6= 0 in Z and distinct xi in X

We have G is a non-zero abelian group, i.e., G 6= 0.
Also 0 /∈ X
For;
If xi = 0 and xj 6= 0 where xi, xj ∈ X ⊆ G.
then, xj = xi + xj, which would contradict the uniqueness of the expression
for xj
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∴ 0 /∈ X
And also from (1) it is clear that X generates G.
Again if n1 = n2 =....... nr = 0,then
n1x1 + n2x2 + .......+ nrxr = 0

Now suppose that n1x1 + n2x2 + .......+ nrxr = 0
we have to shhow that n1 = n2 =....... nr = 0

If possible suppose ni 6= 0 for some i (say n1)
we have n1 = n2 =....... nr = 0
=⇒ x1 = n1x1 + n2x2 + .......+ nrxr
=⇒ x1 = (1+n1)1 + n1x1 + n2x2 + .......+ nrxr
which is a contradiction for uniqueness of expression of x1.
∴ If n1 + n2 +...... + nr = 0, then n1 = n2 =....... nr = 0

2=⇒ 1
Since X generates G, we’ve a = n1x1 + n2x2 + .......+ nrxr.
we’ve to show that this expression is unique

we’ve if n1 + n2 +...... + nr = 0, then n1 = n2 =....... nr = 0
If possible support that:
a = n1x1 + n2x2 + .......+ nrxr
a = m1x1 +m2x2 + .......+mrxr

Subtracting we get,
0 = (n1 −m1)x1 + (n2 −m2)x2 +.....+ (nr −mr)xr.

Then by our assumption we get
n1 −m1 = n2 −m2 =........= nr −mr = 0
=⇒ ni = mi ∀i = 1, 2, ....., r.
i.e., expression of any element a in G is unique.
Hence proved.

RESULT

An abelian group having a generating set X satisfying the conditions stated
in above theorem is a free abelian group and X is a basis for the group.
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UNIVERSAL PROPERTY OF FREE ABELIAN GROUPS

If F is a free abelian group with basis B , then we’ve the following universal
property;
for every arbitrary function f from B to some abelian group A , there exist a
group homomorphism from F to A which extends f.
i.e., the abelian group of base B is unique upto an isomorphism.

PROPOSITION 1

A subset X of an abelian group G is a basis of G if and only if every
mapping of X into an abelian group A can be extended uniquely to a
homomorphism of G−→A.

Proof:

Let X consist of the elements xi ; i ∈ I.
Suppose that X is a basis of G.
Let xi : 7−→ ai be the mapping of X into any abelian group A.

The mapping
x =

∑
i αixi 7→

∑
i αiai

is a well defined homomorphism of G into A and maps xi into ai.
However it is the only homomorphism of G which maps xi to ai for each i ∈
I .

Conversely,
Suppose that G and X have the stated property.
Let A be a free abelian group with basis ai , i ∈ I.
There is a homomorphism φ : G −→ A such that φ(xi) = ai ; i ∈ I.
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As a free abelian with basis ai, there is a homomorphism ψ : A −→ G such
that ψ(ai) = xi ; i ∈ I.
Then ψ ◦ φ is an endomorphism of G which maps xi into ai .
Since the identity endomorphhism IG of G has the same property , by the
uniqueness part of the stated condition ,
it follows that ψ ◦ φ = IG.
The endomorphism φ ◦ ψ of A maps each of the generators ai , i ∈ I of A to
itself and is therefore the identity endomorphism IA of A.

Thus φ is an isomorphism of G with a mapping xi to ai.
Thus ψ is an isomorphism of G with A mapping xi to ai.
Since the elements ai ; i ∈ I forms a Z-basis of A, the elements xi ; i ∈ I
form Z-basis of G.

COROLLARY

Free abelian groups of same rank are isomorphic.

Proof:

If G and G′ are two free abelian groups with basis xi and xi
′ where i ∈ I,

then the homomorphism φ of G into G′ which maps xi and xi
′ ; i ∈ I , is an

isomorphism of G with G′ , with inverse the homomorphism ψ of G′ into G
which maps xi to xi

′ ; i ∈ I .

COROLARY

Every abelian group A is homomorphic image of a free abelian group .
More precisely if A is generated by a system of cardinality p , it is a
homomorphic image of a free abelian group of rank p.

Proof:

Suppose that the elements ai,i ∈ I generates A .
Let G be free abelian of rank p = card(I) and let xi , i ∈ I be a basis of G.
There exist a homomorphism φ :G −→ A such that φ(xi) = ai ; i ∈ I .
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Since the elements ai , i ∈ I , generate A,
φ is surjective
And hence proved

PROPOSITION

If G is any free abelian group,then any two bases of G have the same
cardinality

Proof:

Let B and B′ be any 2 bases of G.
We’ve to show that | B |= | B ′ |

Also we have the isomorphism
⊕x∈B Z ∼= G ∼= ⊕x∈B′ Z.

Case 1:

When B and B′ are finite sets.
Let | B |= m and | B ′ | = n

Take 2G = {2g|g ∈ G} which is a subgroup of G.

Also we have G ∼= ⊕x∈B Z.

=⇒ G/2G ∼= ⊕x∈BZ/2Z.

Similarly since we have G ∼= ⊕x∈B′ Z.

=⇒ G/2G ∼= ⊕x∈B′Z/2Z.

i.e., now we have,

2m=| ⊕x∈B Z/2Z| ∼= G/2G ∼= | ⊕x∈B′ Z/2Z| = 2n

=⇒ m=n.

12



Case 2 :

Consider the case if B is finite and B′ is infinite
As in previous case this would give

⊕x∈BZ/2Z ∼= G/2G ∼= ⊕x∈B′Z/2Z

This is however a contradction,
since ⊕x∈BZ/2Z is a finite group and ⊕x∈B′Z/2Z is an infinite group.
∴ Such a case doesn’t exist.

Case 3:

Both B and b′ are infinite sets

If B is infinite then |B| = | ⊕x∈B Z|

∴ It follows that

|B| = | ⊕x∈B Z| = |G| = | ⊕x∈B′ Z| = |B′|

=⇒ |B| = |B′|

LEMMA

If f: G→ H is an epimorphism of abelian groups and H is free abelian
group , then
G ∼= H⊕ ker(f).

Proof:

We have
” If f: G→ H and g: H → G are any two homomorphism such that fg= IdH
,then,
G ∼= H⊕ ker(f).

13



It follows that we only need to construct the homomorphism g.

We have H is a free abelian group, so let B be the basis of H.
Also f: G→ H is an epimorphism
i.e., f is onto
=⇒ ∀x ∈ B, ∃ax ∈ G such that f(ax) = x

Now let G be any abelian group.
Then by universal property ,
there exist a unique homomorphism g: H → G such that g(x)=ax∀x ∈ B
=⇒ fg(x) = x ∀x ∈ B
=⇒ fg = IdH .

THEOREM 2.2

Let G be a free abelian group of rank n and let H be a subgroup of G. Then
H is free abelian and rank (H)≤ rank (G)

Proof:

Since G is a free abelian group of rank n,
G∼= Z × Z × ......Z× (n summands)
=⇒ G∼= Zn Suppose G = Zn

We want to show that if H ⊆ Zn then , H is free abelian and rank(H) ≤ n.

We prove this using the method of induction on n.

When n=1;
then H=kZ for k> 0
H ={0} or H ∼= Z
=⇒ H is free abelian and rank(H)≤ rank(G)

Next suppose for some n, every subgroup of Zn is free abelian and of rank
≤ n.

14



Now let H ⊆ Z n+1

Define f: Zn+1 → Z by f(m1,m2, ...,mn+1) = mn+1

then , ker(f)={(m1,m2, ..., 0)|mi ∈ Z} ∼= Zn

Now consider the epimorphism, f/H : H → Im(f/H) , sinceIm(f/H) ⊆ Z
Thus Im(f/H) is a free abelian group.

∴ By previous lemma we get,

H ∼= Im(f/H)⊕ ker(f/H)

Also we have ker(f/H) = ker(f) ∩ H
=⇒ ker(f/H) is a subgroup of ker(f)
And since ker(f) is a free abelian group of rank n, by the inductive
assumption we get that ker(f/H) is a free abelian group of rank ≤ n.

∴ H ∼= Im(f/H)⊕ ker(f/H)
where Im(f/H) is a free abelian group of rank ≤ 1 and ker(f/H)is afree
abelian group of rank≤ n.

=⇒ H is a free abelian group of rank ≤ n+1

15



Chapter 3

FINITELY GENERATED
ABELIAN GROUPS

In abstract algebra , an abelian group (G,+) is called finitely generated if
there exists finitely many elements x1, x2, ...., xs in G such that every x in G
can be written in the form
x=n1x1 + n2x2 + .......+ nsxs
with integers n1, ..., ns.
In this case, we say that the set {x1, ..., xs} is a generating set of G or that
x1, ..., xs generate G.
Every finite abelian group is finitely generated

EXAMPLES

1. The integers (Z,+) are a finitely generated abelian group.

2. The integers modulo n,(Z/nZ, +) are a finite (hence finitely
generated) abelian group.

3. Any direct sum of finitely many finitely generated abelian groups is
again a finitely generated abelian group.

4. Every lattice forms a finitely generated free abelian group.

Here Z is an example of an infinite group which is finitely generated
with the generating set {1,−1}

16



But every infinite group is not finitely generated
eg: the set of rational numbers under addition.

If G is free abelian of finite rank then G is ofcourse finitely generated.

THEOREM

If G is an abelian group generated by n elements.
Then G∼= F/H where F is a free abelian group of rank n and H is some
subgroup of F.

Proof:

Let G be an abelian group generated by n elements
i.e., G=< a1, a2, ...., an >.

Let F be free abelian group and {x1, ..., xn} be a basis of F.
Then we have a unique isomorphism f : F → G defined by f(xi) = ai.
Let H=ker(f).
and here Im(f)=G.

∴ By first isomorphism theorem ,
we have, G∼= F/H

PROPOSITION

Let G be a finitely generated abelian group with generating set
< a1, a2, ...., an >. Let Φ : Z × Z × ....× Z → G (where there are n factors
of Z ) be defined by φ(h1, ..., hn) = h1a1 + h2a2 + .......+ hnan.
Then φ is a homorphism onto G.

Proof:

Consider (h1, ..., hn), (k1, ..., kn) ∈ Z × Z × ....× Z,

φ((h1, ..., hn) + (k1, ..., kn)) = φ(h1 + k1, ..., hn + kn)
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=(h1 + k1)a1 + ...+ (hn + kn)an

=(h1a1 + ...+ hnan) + (k1a1 + ...+ knan)

=φ(h1, ..., hn) + φ(k1, ..., kn)

=⇒ φ is an homorphism .

Since a1, a2, ...., an generates G, φ is a homomorphism onto G.

PROPOSITION

If X={x1, x2, ...., xr} is a basis for a free abelian group G and t ∈ Z ,then for
i 6= j, the set Y={x1, x2, ..xj−1, xj + txi, xj, xj+1, .., xr} is also a basis for G.

Proof:

To show that Y is a basis , we need to show that the set will span G and
the elements are linearly independent
Given{x1, x2, ...., xr} spans G.

we can write xj = (−t)xi + 1(xj + txi)

⇒ xj can be recovered from Y, which thus als generates G.

Suppose
n1x1 + n2x2 + ...+ nj−1xj−1 + nj(xj + txi) + nj+1xj+1 + ...+ nrxr = 0

n1x1 + n2x2 + ...+ (ni + njt)xi + ...njxj + ...+ nrxr = 0

And since X is a basis
n1 = n2 =.... =ni + njt= ...=nj=...= nr = 0

From ni + njt= ...=nj = 0, it follows that
ni = 0;

18



i.e., we get, n1 = n2 =.... =ni= ...=nj=...= nr = 0

Also we got Y generates G.
∴ By theorem 2.1 Y is a basis of G.

PROPOSITION 4

Let G be a non-zero free abelian group of finite rank n and let K be a
non-zero subgroup of G. Then K is free abelian of rank s ≤ n. Furthermore
there exists a basis {x1, x2, ..., xn} for G and positive integers d1, ...., ds such
that
•di|di+1 for i = 1, . . . , s-1
•{d1x1, d2x2, ..., dsxs} is a basis of K.

Proof:

Let G be a non-zero free abelian group of finite rank n
Let K be a non-zero subgroup of G.
Then we have K is also free abelian of rank≤ n.
Now we have to show that K has a basis of the described form.

Suppose Y={y1, y2, ..., yn} is a basis for G.
All non-zero elements in K can be expressed in the form
k1y1 + k2y2 + ...+ knyn for some |ki| is non-zero.

Among all bases Y for G, select one Y1 that yields the minimal such
non-zero value |ki| as all non-zero elements of K are written in teerms of the
basis elements in Y1.

By renumbering the elements of Y1 if necessary we can assume there is
w1 ∈ K such that w1 = d1y1 + k2y2 + .....+ knyn
where d1 > 0 and d1 is the minimal attainable coefficient as just described.

Using the division algorithm, we write
kj = d1qj + rj where 0 ≤ rj ≤ d1 for j = 2,3,....,n

w1 = d1y1 + (d1q2 + r2)y2 + .....+ (d1qn + rn)yn
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=⇒ w1 = d1(y1 + q2y2 + ...+ qnyn) + r2y2 + .....+ rnyn

let x1 = y1 + q2y2 + ...+ qnyn

=⇒ w1 =d1x1 + r2y2 + .....+ rnyn

Then by Proposition 3, {x1, y2, ..., yn} is also a basis for G.
Also from eq(1) and our choice of Y1 for minimal coefficient d1 , we see that
r2 = .....rn = 0
Thus d1x1 ∈ K

We now consider bases for G of the form {x1, y2, ..., yn},
Each element of K can be expressed in the form h1x1 + k2y2 + ...+ knyn.
Since d1x1 ∈ K , we can subtract a suitable multiple of d1x1 and then using
the minimality of d1 , we see actually have k2y2 + ...+ knyn in K.
Among all such bases {x1, y2, ..., yn} we choose one Y2 that leads to some
ki � 0 of minimal magnitude.

By renumbering the elements of Y2

we can assume that there is w2 ∈ K such that w2 = d2y2 + +.....+ knyn
where d2 > 0 and is minimal as just described

Exactly as in the preceeding paragraph , we can modify our basis from
Y2 = {x1, y2, ..., yn} to a basis Y3 = {x1, x2, y3, ..., yn} for G where
d1x1, d2x2 ∈ K
writing d2 = d1q + r ; 0≤ r ≤ d1
we see that {x1 + qx2, x2, y3, ..., yn} is a basis for G and
d1x1 + d2x2 = d1x1 + (d1q + r)x2= d1(x1 + qx2) + rx2 ∈ K

But by our minimal choice of d1 , r=0.
=⇒ d1 divides d2

Proceeding in this manner , we will get {x1, x2, ...xs, ys+1, .., yn} as a basis
for G where the only element of K of the form ks+1ys+1 + ...+ knyn is zero
i.e., all ki are zero
We then let xs+1 = ys+1 = ..... = xn = yn and a basis for G of the described
form in the proposition.
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PROPOSITION

Every finitely generated abelian group is isomorphic to a group of the form
Zm1 × Zm2 × .....× Zmr × Z × Z......× Z, where mi divides mi+1 for
i=1,2,....r-1.

Proof:

We know that Z/nZ ∼= Zn
∴ Z/1Z ∼= Z/Z ∼= Z1

∼= 0
Let G be a finitely generated abelian group generated by n elements.

Let F be a free abelian group of rank n.
Then we know that F∼= Z × Z × Z......× Z (n factors)

Consider the homomorphism φ : F −→ G and let K be the kernel of this
homomorphism.
Also K is a subgroup of F.
Then by proposition 4, there is basis for F of the form {x1, x2, ..., xn} where
{d1x1, d2x2, ..., dsxs} is a basis of K and di|di+1 for i = 1, . . . , s-1

Now by proposition 1, we have G∼= F/K.

But , F/K ∼= (Z × Z × Z......× Z)/(d1Z × d2Z × .....× dsZ......× 0....× 0)

∼= (Zd1 × Zd2 × .....× Zds × Z......× Z)

It is possible that di=1 , in which case Zdi = 0 and can be dropped from
this product
similarly d2 may be 1 and so on.

NOTE: This numbers mi here are known as torsion coefficient of G.
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FUNDAMENTAL THEOREM OF FINITELY GENERATED
ABELIAN GROUPS

Every finitely generated abelian group A is a direct sum of a free abelian of
finite rank and cyclic subgroups
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Chapter 4

FREE GROUPS

A set of group elements that satisfy no relations except those implied by
the axioms is called free and a group that has a free set of generators is
called free group.

In otherwords , a group is called a free group if no relation exist between its
group generators other than the relationship between an element and its
inverse required as one of the defining properties of a group.

for eg : Additive group of integers is free with a single generator namely 1
and its inverse.

To describe free group ,
we start with an arbitrary set S ={a, b, c, .....} , where the elements in S are
called the symbols and a word is defined to be the finite string of symbols
in which repetition is allowed.
for eg : a, aa, ba, aaba are words.

Two words can be composed by juxtaposition , that is placing them side by
side:
aa , ba 7→ aaba

This is an associative law of composition on the set W of words.
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We include the empty word in W as an identity element and we use the
symbol 1 to denote it.

Then the set W becomes what is called the free semigroup on the set S.
But it cannot be called as group because it lacks inverses and adding
inverses complicates things a little.

Let S′ be the set consisting of symbols a and a−1 for every a in S
i.e., S′ = {a, a−1, b, b−1, c, c−1, ...}
and let W′ be the semigroup of words made by using the symbols in S′.

If an element of S lies immediately next to its inverse , the word may be
simplified by ommitting the pair , that is, if a word looks like
.......xx−1...... or .......x−1x...... for some x in S
we may agree to cancel the two symbols x and x−1 to reduce the length of
the word.
A word is called reduced if no such cancellations can be made.

Starting with any word w in W′ , we can perform a finite sequence of
cancelations and must eventually get a reduced word w0 , possible the
empty word 1, and such a word w0 is called as the reduced form of W.

There may be more than 1 way to proceed with cancellations.
For instance,
starting with w= abb−1c−1cb, we can proceed in 2 ways:

abb−1c−1cb abb−1c−1cb
ac−1cb abb−1b

ab ab

The same reduced word is obtained at the end though the symbols come
from different places in the word

Definition : A group G is called a free group if there exists a generating set
X of G such that every non-empty reduced group word in X denes a
non-trivial element of G.
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PROPOSITION

There is only one reduced form of a given word w.

Proof:

We prove this using method of induction(on lenth of w).
If w is reduced , then nothing is to be done.
Suppose that w is not reduced
i.e., there exist some pair of symbols that can be cancelled .
let w=.....xx−1.....

Now if we show that we can obtain every reduced form of w by cancelling
the pair xx−1 first , the proposition will follow by induction , because the
word w is shorter.
Let w0 be the reduced form of w.
It is obtained by some sequence of cancellations .
The first case is that our pair xx−1 is cancelled at some step in this
sequence.
If so, we may suppose that xx−1 is cancelled first.
So this case is settled.

On the otherhand , since w0 is reduced , the pair xx−1 cannot remain in w0.
Atleast one of the two symbols must be cancelled at some time.
If the pair itself is not cancelled , the first cancellation involiving the pair
must look like

....x−1xx−1.... or ....xx−1x....
Note that the word obtained by this cancellation is the same as the one
obtained by cancellin the pair xx−1. So ath this stage we may cancel the
original pair instead .
Then we are back in the first case , so the proposition is proved.

NOTE:
We call two words w and w′ in W′ equivalent and we write w∼ w′ if they
have the same reduced form.
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PROPOSITION :

Product of equivalent words are equivalent
i.e., if w∼ w′ and v∼ v′ then wv∼ w′ v′.

Proof:

Suppose that we have cancelled as much as possible in w to reduce w to w0

and similarly made cancellations in v to reduce it to v0

Then wv is reduced to w0v0.
Now we continue cancelling in w0v0 untill the word is reduced.
If w∼ w∼ w′ and v∼ v′ and v∼ v′ ,the same process when applied to w′v′

passes through w0v0 too, so it leads to the same reduced word.

PROPOSITION :

The set F of equivalence classes of words in W′ is a group , with the law of
composition induced from multiplication (juxtaposition) in W′ .

Proof:

Clearly multiplication of words holds the law of associativity.
And also the empty word acts as identity in F with respect to the
multiplication.
Again we have to check if elements in F are invertible
let w=xy...z
=⇒ w−1 = z−1...y−1x−1

then w.w−1=xy...zz−1...y−1x−1

then it can be reduced and we get w.w−1=1.
=⇒ −1 is the inverse of w.
∴ F satisfies all the axioms of a group.

NOTE:
The group F of equivalence classes of words in S′ is called the free group on
the set S.Since S is a generating set of F and every non-empty reduced
word in W′ defines a non-trivial element in F. Hence S is a free basis of F
so thatF is free on X.
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UNIVERSAL PROPERTY OF FREE GROUPS.

Let F be the free group on the set S ={a, b, c, ..} and G be a group. Any
map of sets f :S −→ G extends in a unique way to a group homomorphism
φ : F −→ G

If we denote the image f(x) of an element x of S by x , then φ sends a word
in S′ ={a, a−1, b, b−1, ...} to the corresponding product of the elements
{a, a−1, b, b−1, ...} in G.

RELATIONS:

A relation R among elements x1, x2, ....xn of a group G is a word r in the
free group on the set {x1, x2, ....xn} that evaluates to 1 in G.
We will denote such arelation either a r or for emphasis as r=1.

for example:
The dihedral group Dn of symmetries of a regular n-sided polygon is
generated by the rotation x through a angle 2π

n
and areflection y, and these

generators satisfy the relation
xn = 1 y2 = 1 yx = x−1y

i.e., xn = 1 y2 = 1 xyxy = 1

One can use these relations to write the elements of Dn in the form xiyj

with 0 ≤ i < n and 0 ≤ j < 2 and then one can compute the multiplication
table for the group.
So the relations determine the group and they are therefore called the
defining relations.
When the relations are more complicated , it can be difficult to determine
the elements of the group and the multiplication table explicitly.
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Chapter 5

GROUP PRESENTATIONS

Let S be the set of generators so that every element of the group can be
written as a product of some of these generators and a set R of relations
among those generators.
A presentation of a group is a set of elements that generate the group
together with relators ,products of generators that give the identity element.
We then say G has presentation < S|R > .
Informally, G has the above presentation if it is the ”freest group”
generated by S subject only to the relations R.
Formally, the group G is said to have the above presentation if it is
isomorphic to the quotient of a free group on S by the normal subgroup
generated by the relations R.

The presentation < S|R > is finitely generated if the set S is finite and is
said to be finitely realted if R is finite. If both sets S and R are finite then
it is said to be a finite presentation.

EXAMPLES:

Consider the group presentation with
S={a} and R={a6}

i.e., the presentation +< a : {a6} = 1 >.
This group generated by one element a with the given relation is
isomorphic to the group Z6.

Now consider the group defined by two generators a and b with the relation
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a2 = 1,b3=1 and ab=ba
i.e., the group with the presentation < a, b : a2, b3, aba−1b−1 >
Thus every element in this group can be written as a product of
non-negative powers of a and b.The realtion aba−1b−1 = 1 , i.e., ab=ba
allows us to write all first all factors involving a and then all factors
involving b ,i.e., every element of group is equal to some ambn.
But a2 = 1 ,b3=1 show that there are six distinct elements 1,a,b,b2,ab,ab2.
Therefore the presentation gives us a group of order 6 that is abelian and
by Fundamental theorem it must be cyclic and isomorphic to Z6.

GROUPS OF ORDER 8.

Let G be a non-abelian group of order 8.
Since G is non-abelian , it has no elements of order 8.
So each element but the identity is of order 2 or 4.

If every element were of order 2,
then for a,b∈ G we would have (ab)2 = 1
=⇒ ab.ab = 1

Consider ba = 1.ba.1 = a2.ba.b2 = a(ab)2b = ab
=⇒ ab = ba, which gives a contradiction to the assumption that G is not
abelian.

=⇒ G must have an element of order 4.
Let < a > be a subgroup of order 4.
=⇒ < a > is a normal subgroup of G
Choose an element b /∈< a >
then the cosets < a > and b< a > exhaust all of G.
=⇒ a and b are generators of G and a4 = 1

Now since < a > is normal in G
G/< a >∼= Z2

and we have b2 ∈< a >
If b2=a or b2 = a3 , then b would be of order 8
hence b2 = 1 or b2 = a2
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Finally , since < a > is normal , we have bab−1 ∈< a > and since
b< a > b−1 is a subgroup conjugate to < a > and hence isomorphic to
< a >,
we see that bab−1 must be an element of order 4
Thus bab−1 = a or bab−1 = a3

If bab−1 = a
=⇒ ba= ab, which would make G abelian

Now if bab−1 = a3 =⇒ ba = a3b
Thus we have 2 possibilities for G, namely

G1 : (a, b : a4 = 1, b2 = 1, ba = a3b)
G2 : (a, b : a4 = 1, b2 = a2, ba = a3b)

=⇒ a−1 = a3 and b−1 = b in G1

=⇒ a−1 = a3 and b−1 = b3 in G2

These facts along with the relation ba= a3b enables us to express every
element in G1 in the form ambn

Since a4 =1 and either b2 = 1 or b2 = a2 , the possible elements in group are:
1,a,a2, a3,b,ab,a2b, a3b

=⇒ G1 and G2 have order 8
Since ba=a3b 6= ab
We see both G1 and G2 are non-abelian.
Now the two groups are not isomorphic follows that, G1 has two elements
of order 4 namely a and a3. On the otherhand ,in G2 all elements but 1 and
a2 are of order 4

Now consider the computation
(a2b)(a3b) = a2(ba)a2b = a5(ba)ab = a8(ba)b = a11b2

For G1, we have a11b2 = a11 =a3

For G2, we have a11b2 = a13= a

By computing each elements to form the multiplication table we get,
the group G1 is the octic group and is isomorphic to the group D4

whereas group G2 is the quaternion group and is isomorphic to the
multiplicative group {1,−1, i,−i, j,−j, k,−k} of quaternions.
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CONCLUSION

Just as the concept of basis is important in the study of real vector spaces
in linear algebra,it is equally useful to consider Abelian groups which
possess a basis.
An abelian group that possess a basis is called as free abelian group.
And here we focussed on free abelian group with finite basis and discussed
various properties about it.
Then we move onto finitely generated abelian groups and study some
theorems on free abelian groups and finitely generated abelian groups .
And the contents mentioned in this chapter deals with the proof of
”fundamental theorem of finitely generated abelian groups”.
The next chapter came up with a different concept called as ”free group”,
a group which satisfy no relation except those implied by the group axioms
followed by certain propositions.
In the last chapter we discussed about group presentations.The idea of a
group presentation is to form a group by giving a set of generators for the
group and certain equations or relations that we want the generators to
satisfy.Also we have determined all groups of order 8 up to isomorphism
using group presentation.

In short , this project deals with the study on free abelian groups and free
groups and various properties regarding them. Also we tried to give a
layout for the proof of fundamental theorem. It also discussed about the
group presentation through which we identify the non-abelian groups of
order 8 upto isomorphism.
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