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Chapter 1

INTRODUCTION

Mathematics is one of the essential emanation of the human spirit-a thing to

be valued in and for itself like art or poetry.That is, mathematics may not

teach us how to add love or minus hate,but it gives us every reason to hope

that every problem has a solution.

The theory of fixed point is one of the most powerful tool of modern math-

ematics.Theorem concerning the existence and properties of fixed points are

known as fixed point theorem.Fixed point theory is a beautiful mixture of

analysis,topology and geometry.In particular fixed point theorem has been ap-

plied in such field as mathematical engineering,physics,economics,biology,game

theory and chemistry etc.

The fixed point theory is divided into two major areas: One is the fixed

point theory on contraction or contraction type mappings on complete metric

space and the second one is the fixed point theory on continuous operators on

compact and convex subsets of a normed space.The begining of fixed point

theory in normed space is attributed to the work of Brouwer in 1920, who

proved that any continuous self-map of the closed unit ball of Rn has a fixed

point.Thebegining of fixed point theory on complete metric space is related
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to Banach Contraction Principle,in 1922.Let (X, d) be a metric space and

F : X→X be a mapping.Then F is said to be a contraction if there exist a

constant L ∈[0,1) ,called a contraction factor,such that d(F(x), F(y))≤ Ld(x,

y) Banach contraction principle says that any contraction self-mappings on

a complete metric space has a unique fixed point.This principle is one of a

very power test for existence and uniqueness of the solution of considerable

problems arising in mathematics.

The aim of this paper is to surveys the basic theorem for contraction map-

pings on a finite dimensional metric space.This work consists of mainly eight

Chapters.The first two-three chapters concerning the history and some basic

definitions which are useful for this work. In the fourth chapter,we deals

with the existence and uniqueness of fixed points for a contractive mapping

in a complete metric space.A fixed point of an operator is a solution of the

equation x = F(x). Concerning the metric branch,the most important metric

fixed point result is the Banach Contraction Principle which was considered

as one of the fundamental principle in the field of functional analysis.Then we

establish the extension of Banach Contraction Principle for weak contraction

mapping and the sequences of mapping and uniqueness of fixed point.In the

last two chapters,we treat fixed points in a b-metric space for weak contrac-

tion mapping and in compact metric space by introducing the new concept

co-cyclic representation.
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Chapter 2

HISTORY

In 1886,Poincare was the first to work in this field.Then Brouwer in 1912,proved

fixed point theorem for the solution of the equation F(x) = x. Brouwer

theorem gives no information about the location of fixed points. However,

effective methods have been developed to approximate the fixed points. He

also proved fixed point theorem for a square,a sphere and their n-dimensional

counter parts which was further extended by Kakutani.Mean while Banach

Contraction Principle came into existence which was considered as one of the

fundamental principle interested the field of functional analysis.In 1922,Ba-

nach proved that a contraction mapping in the field of a complete metric space

possesses a unique fixed point.Later on it was developed by Kannan.The first

fixed point theorem in an infinite dimensional Banach space was given by

Schauder in 1930. Fixed point theory is an interdisciplinary topic which can

be applied in various disciplines of mathematics and mathematical science like

game theory,approximation theory, economics,optimization theory and vari-

ational inequalities.The fixed point theory (as well as Banach Contraction

Principle) has been studied and generalized in different spaces and various

fixed point theorem were developed.
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Chapter 3

PRELIMINARIES

A point is often called fixed point when it remains invarient,irrespective of

the type of transformation it undergoes.For a functionF that has a set X

as both domain and range,a fixed point is a point x ∈ X for which F(x) =

x.Two fundamental theorem concerning fixed points are those of Banach and

Brouwer.

Definition 3.1. Let X be a non-empty set and F be a function which maps

X to X.A fixed point of F is a point x ∈ X such that F(x) = x

Example 1. Let F be a map on R defined by F(x) = x 2 7x + 12 We know

that x=3,4 are root of the equation. Consider F(x) = x where F(x) = x2+12
7

Then x = 3 and x = 4 are two fixed point of F(x)

Definition 3.2. Let X be a non-empty set.A mapping d : X X → R is said

to be a metric(or distance function) iff d satiesfies the following axioms: (M-

1) d(x, y)≥ 0 ∀ x, y∈X

(M-2) d(x, y) = 0 iff x = y ∀ x, y∈X

(M-3) d(x, y) = d(y, x) ∀ x, y∈X

(M-4) d(x, y)≤ d(x, z) + d(z, y) ∀ x, y, z ∈X

If d is metric for x,then the ordered pair(X, d) is called a metric space and
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d(x, y) is called the distance between x and y

Definition 3.3. A sequence (xn) in a metric space (E, d) is said to converge

to an element xofE if

lim
n→∞

d(xn, x) = 0

A sequence xn of elements of a metric space (E, d) is called a Cauchy sequence

if given ϵ > 0, there exists N such that for p, q ≥ N ,d(xp, xq) < ϵ

Definition 3.4. A metric space (X, d) is called complete,if every cauchy

sequence converges in it.

Definition 3.5. Let (X, d) be a complete metric space and let F:X → X is

said to be Lipschitz constant such that d(F(x), F(y)) ≤ c d(x, y) ∀ x, y∈X

1. If o¡c¡1,then the mapping is called contraction

2. If c=1,then the mapping is called nonexpansive

3. If d(F(x), F(y)) = d(x, y),then it is isometry

Example 2. Let F:R→R by F(x)=x
2 d(F(x), F(y))leq 1

2 d(x, y) here c= 1
2

,0¡c¡1. Hence F is a contraction.

Example 3. Let F:[ 1
2,2]→[12,2] by F(x) = 1 x d(F(x), F(y)) = d(1 x.1 y)

≤ d(x, y) Hence F is nonexpansive.

Example 4. Let F:R → R by F(x) = x Then d(F(x), F(y)) = d(x, y) Hence

F is an isometry.

Definition 3.6. A subset A of a metric space X is said to be c compact subset

of X ,if every cover of A by open subsets of X has a finite subcover. A metric

space X is said to be compact if X is a compact subset of itself.In other words

,every sequence in X has a convergent subsequence.
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Definition 3.7. A neighborhood of x0 ∈ X is an open ball of radius r > 0in X

that is centered at x0. An open ball of radius r centered at x0 is the collection

of all points x ∈ X satisfying |x-x0| < r

Definition 3.8. A set is said to be locally compact if every point in X has a

compact neighborhood .That is , for every point in x ∈ X we can find an open

ball for which every sequence has a convergent subsequence

Definition 3.9. A mappingTof a metric space E into a metric space E is

said to be continuous if for every convergent sequence (xn) of E,

lim
n→∞

Txn = T ( lim
n→∞

xn)
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Chapter 4

FIXED POINT THEOREMS

Fixed point theorems concern maps f of a set X into itself that, under certain

conditions, admit a fixed point, that is, a point x ∈ X such that f(x) = x.

The knowledge of the existence of fixed points has relevant applications in

many branches of analysis and topology.

4.0.1 SOME OF THE INITIAL THEOREMS

Some of the basic theorems in this subject is listed below without proof.

Theorem 4.1 ( Brouwer fixed point theorem ). The theorem states that if

f : B → Bis a continuous function and B is a ball in Rn , then f has a fixed

point.

This theorem simply guarantees the existence of a solution, but gives

no information about the uniqueness and determination of the solution. For

example,

Example 5. if f : [0, 1] → [0, 1]is given by f(x) = x2 , then f(0) =

0andf(1) = 1, that is, f has 2 fixed points.

Several proofs of this theorem are given. Most of them are of topological

in nature. A classical proof due to Birkhoff and Kellog was given in 1922.

Brouwer theorem gives no information about the location of fixed points.
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However, effective methods have been developed to approximate the fixed

points. Such tools are useful in calculating zeros of functions REMARK:

This theorem is not true in infinite dimensional spaces.

The first fixed point theorem in an infinite dimensional Banach space was

given by Schauder in 1930.

Theorem 4.2 (SCHAUDER FIXED POINT THEOREM). If B is a com-

pact, convex subset of a Banach space X and f : B → B is a continuous

function, then f has a fixed point

The Schauder fixed point theorem has applications in approximation

theory, game theory and other scientific area like engineering, economics and

optimization theory. The compactness condition on B is a very strong one and

most of the problems in analysis do not have compact setting. It is natural

to prove the theorem by relaxing the condition of compactness. Schauder

proved the following theorem

Theorem 4.3. If B is a closed bounded convex subset of a Banach space X

and f : B → B is continuous map such that f(B) is compact, then f has a

fixed point.

The above theorem was generalized to locally convex topological vector

spaces by Tychonoff in 1935 .

Theorem 4.4. If B is a nonempty compact convex subset of a locally convex

topological vector space X and f : B → B is a continuous map, then f has a

fixed point.

Further extension of Tychonoffs theorem was given by Ky Fan . A very

interesting useful result in fixed point theory is due to Banach known as the

Banach contraction principle.
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Theorem 4.5. Every contraction map is a continuous map, but a continuous

map need not be a contraction map.

Example 6. fx = xis a continuous map but it is not a contraction map.

The method of successive approximation introduced by Liouville in 1837

and systematically developed by Picard in 1890 culminated in formulation

by Banach known as the Banach contraction principle (BCP) is stated in the

following section.

4.0.2 BANACH CONTRACTION PRINCIPLE

Theorem 4.6 (BANACH CONTRACTION PRINCIPLE OR CONTRAC-

TION THEOREM). Let F be a contraction on a complete metric space X.Then

F has a unique fixed point.

Proof. Let x0 ∈ X Define x1 = F (x0) We will show that the sequence (xn)

is cauchy sequence in X. Since F is a contraction,there exist a real number

0 < c < 1 such that,

d(F (x), F (y)) ≤ cd(x, y)∀x, y ∈ X

For n ≥ 1,

d(xn+1, xn) = d(F (xn), F (xn−1))

≤ cd(xn, xn−1)

Similarly,

d(xn, xn−1) = d(F (xn−1), F (xn−2))

≤ cd(xn−1, xn−2)

Thus

d(xn+1, xn) ≤ c2d(xn−1, xn−2)
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Continuing like this,we get,

d(xn+1, xn) ≤ cnd(x, x0)∀n = 0, 1, 2, ...

Now for m > n,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + .....+ d(xm−1, xm)

≤ (cn + cn + 1 + · · ·+ cm−1)d(x1, x0)

≤ cn(1 + c+ .....+ cm−n−1)d(x1, x0)

≤ cnd(x1, x0)
1

1− c

= cnd(F (x0), x0)
1

1− c

Since cn → ∞asn → ∞ (xn) is a cauchy sequence in X. Sine X is complete

limn→∞(xn) = x for some x ∈ X Since F is a contraction,F is continuous and

hence

F (x) = F ( lim
n→∞

xn)

= lim
n→∞

F (xn)

= lim
n→∞

xn+1

= x

Thus suppose there exist y ∈ X such thatF (y) = y. Then ,

d(F (x), F (y)) ≤ d(x, y)

d(x, y) ≤ cd(x, y)

d(x, y) = 0

⇒ x = y

Thus,F has a unique fixed point in X
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Example 7. Let F : R → R defined by, F (x) = 3x − 1 Then x = 1
2 is the

fixed point of F .

REMARK:

Letting m → ∞ in the above equation, d(xn, x) ≤ cnd(F (x0), x0)
1

(1−c) which

provides a control on the convergence of (xn) to the fixed point x.

REMARK:

Contraction on incomplete metric space may fail to have fixed points.

Example 8. Let X = (0, 1]with usual distance. Define F : X → XasF (x) =

x
2

Then

d(F (x), F (y)) = d(
x

2
,
y

2
)

≤ d(x, y)

2

which implies that F is a contraction on X. Now, X is an incomplete space,since

(xn) = ( 1n) is a cauchy sequence which converges to zero,but 0 /∈ X.

Corollary 4.6.1. Let X be a complete metric space and Y be a topological

space. Let f : X × Y → X be a continuous function. Assume that f is a

contraction on X uniformly in Y ,that is,

d(f(x1, y), f(x2, y)) ≤ λd(x1, x2),

∀x1, x2 ∈ X, ∀y ∈ Y forsomeλ < 1. Then, for every fixed y ∈ Y , the map

x 7→ f(x, y) has a unique fixed point ϕ(y).

Moreover, the function y 7→ ϕ(y)is continuous from Y toX.

Notice that if f : X × Y → X is continuous on Y and is a contraction on

X uniformly in Y , then f is in fact continuous on X × Y .

Proof. In light of Theorem 4.1, we only have to prove the continuity of ϕ.
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For y, y0 ∈ Y , we have d(ϕ(y), ϕ(y0)) = d(f(ϕ(y), y), f(ϕ(y0), y0))

≤ d(f(ϕ(y), y), f(ϕ(y0), y)) + d(f(ϕ(y0), y), f(ϕ(y0), y0))

≤ λd(ϕ(y), ϕ(y0)) + d(f(ϕ(y0), y), f(ϕ(y0), y0))

which implies

d(ϕ(y), ϕ(y0)) ≤
1

1− λ
d(f(ϕ(y0), y), f(ϕ(y0), y0)).

Since the above right-hand side goes to zero as y → y0, we have the desired

continuity

Example 9. Consider the map

g(x) =

 1
2 + 2x x ∈ [0, 14 ]

1
2 x ∈ [14 , 1]

mapping [0, 1] onto itself.

Then g has unique fixed point(x = 1
2)

For

g(x) = x⇒ x = 1
2 + 2x

⇒ x = −1
2 /∈ [0, 1]

g(x) = x⇒ x = 1
2 ∈ [0, 1] .And g is discontinous.

Definition 4.1. For f : X → X and n ∈ N , we denote by fn the nth -iterate

of f, namely,f ◦ · · · ◦ f n-times (f 0 is the identity map)

Corollary 4.6.2. Let X be a complete metric space and let f : X → X. If

fn is a contraction, for some n ≥ 1, then f has a unique fixed point x ∈ X.

Proof. Let x be the unique fixed point of fn , given by Theorem 4.1. Then

fn(f(x)) = f(fn(x)) = f(x), which implies f(x) = x. Since a fixed point of

f is clearly a fixed point of fn , we have uniqueness as well.

Example 10. .In the abovr example we can see that g2(x) ≡ 1
2 .
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Chapter 5

EXTENSIONS OF CONTRACTION

PRINCIPLE

There is in the literature a great number of generalizations of Theorem 4.6

Theorem 5.1 (Boyd-Wong). Let X be a complete metric space, and let f :

X → X. Assume there exists a right-continuous function phi : [0,∞) →

[0,∞)such that ϕ(r) < rifr > 0,and d(f(x1), f(x2)) ≤ ϕ(d(x1, x2)),∀x1, x2 ∈

X. Then f has a unique fixed point x ∈ X. Moreover, for any x0 ∈ X the

sequence fn(x0) converges to x.

Clearly, Theorem 4.6 is a particular case of this result, for ϕ(r) = λr.

Proof. If x1, x2 ∈ Xare fixed points of f , then

d(x1, x2) = d(f(x1), f(x2)) ≤ ϕ(d(x1, x2)

so x1 = x2. To prove the existence, fix any x0 ∈ X, and define the iterate

sequence xn + 1 = f(xn). We show that xn is a Cauchy sequence, and the

desired conclusion follows arguing like in the proof of Theorem 4.6. For

n ≥ 1, define the positive sequence an = d(x − n, xn−1) It is clear that

an+1 ≤ ϕ(an) ≤ an; therefore an converges monotonically to come a ≥ 0.

From the right-continuity of ϕ, well get a ≤ ϕ(a), which entails a = 0. If xn

is not a Cauchy sequence, there is ϵ > 0and integers mk > nk ≥ k for every
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k ≥ 1 such that

dk := d(xmk
, xn−k) ≥ ϵ, ∀k ≥ 1.

In addition, upon choosing the smallest possible mk, we may assume that

d(xmk−1
, xnk

) < ϵ

for k big enough (here we use the fact that an →0). Therefore, for k big

enough, ϵ ≤ dk ≤ d(xmk
, xmk−1

)+ d(xmk−1,xnk
) < amk

+ ϵ implying that dk → ϵ

from above as k → ∞. Moreover,

dk ≤ dk+1 + amk+1
+ ank+1

≤ ϕ(dk) + amk+1
+ ank+1

and taking the limit as k → ∞ ,we obtain the relation ϵ ≤ ϕ(ϵ) which has to

be false since ϵ > 0.

Theorem 5.2 (Caristi). Let X be a complete metric space, and let f : X →

X. Assume there exists a lower semicontinuous function ψ : X → [0,∞)such

that

d(x, f(x)) ≤ ψ(x)ψ(f(x)),∀x ∈ X.

Then f has (at least) a fixed point in X.

Again, Theorem 4.6 is a particular case, obtained for,

ψ(x) = d(x, f(x))/(1− λ).

Notice that f need not be continuous.

Proof. We introduce a partial ordering on X, setting

x ≼ y ⇔ d(x, y) ≤ ψ(x)− ψ(y).

Let ∅ ̸= X0 ⊂ X be totally ordered, and consider a sequence xn ∈ X0such

that ψ(xn) is decreasing to α := infψ(x) : x ∈ X0. If n ∈ N and m ≥ 1,

d(xn+m, xn) ≤ σm−1
i=0 d(xn+i+1, xn+i)

15



≤ σm−1
i=0 ψ(xn+i)ψ(xn+i+1)

= ψ(xn)ψ(xn+m).

Hence xnis a Cauchy sequence, and admits a limit x ∈ X, for X is complete.

Since ψ can only jump downwards (being lower semicontinuous), we also have

ψ(x) = α. If x ∈ X0 and d(x, x) > 0, then it must be x ≼ xn for large n.

Indeed, limn ψ(xn) = ψ(x) ≤ ψ(x).We conclude that x is an upper bound for

X0, and by the Zorn lemma there exists a maximal element x. On the other

hand, x ≼ f(x), thus the maximality of x forces the equality x = f(x).

If we assume the continuity of f, we obtain a slightly stronger result, even

relaxing the continuity hypothesis on ψ.

Theorem 5.3. Let X be a complete metric space, and let f : X → X be a

continuous map. Assume there exists a function ψ : X → [0,∞) such that

d(x, f(x)) ≤ ψ(x)ψ(f(x)),∀x ∈ X.

Then f has a fixed point in X. Moreover, for any x0 ∈ X the sequence fn(x0)

converges to a fixed point of f.

Proof. Choose x0 ∈ X. Due the above condition, the sequence ψ(fn(x0)) is

decreasing, and thus convergent. Reasoning as in the proof of the Caristi

theorem, we get that fn(x0) admits a limit x ∈ X, for X is complete. The

continuity of f then entails.

f(x) = lim
n
f(fn(x0)) = x.

We conclude with the following extension of Theorem 4.6, that we state

without proof.
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Theorem 5.4 (Ciric). Let X be a complete metric space, and let f : X → X

be such that

d(f(x1), f(x2))

≤ λmaxd(x1, x2), d(x1, f(x1)), d(x2, f(x2)), d(x1, f(x2)), d(x2, f(x1))

for some λ < 1 and every x1, x2 ∈ X. Then f has a unique fixed point x ∈ X.

Moreover, d(fn(x0), x) = O(λn)foranyx0 ∈ X.

Also in this case f need not be continuous. However, it is easy to check

that it is continuous at the fixed point. The function g of the former example

fulfills the hypotheses of the that with λ = 2
3 .

5.1 WEAK CONTRACTION

We now dwell on the case of maps on a metric space which are contractive

without being contractions.

Definition 5.1. Let X be a metric space with a distance d. A map f : X → X

is a weak contraction if

d(f(x1), f(x2)) < d(x1, x2),∀x1 ̸= x2 ∈ X.

5.1.1 FIXED POINT THEOREMS

Being a weak contraction is not in general a sufficient condition for f in order

to have a fixed point, as it is shown in the following simple example.

Example 11. Consider the complete metric space X = [1,+∞), and let

f : X → X be defined as f(x) = (x+ 1)/x.

It is easy to see that f is a weak contraction with no fixed points. Nonetheless,

the condition turns out to be sufficient when X is compact.
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Theorem 5.5. Let f be a weak contraction on a compact metric space X.

Then f has a unique fixed point x ∈ X. Moreover, for any x0 ∈ X the

sequence fn(x0) converges to x .

Proof. The uniqueness argument goes exactly as in the proof of Theorem 1.3.

From the compactness of X, the continuous function x 7→ d(x, f(x)) attains

its minimum at some x ∈ X. If x ̸= f(x), we get

d(x, f(x)) = miny∈Xd(y, f(y)) ≤ d(f(x), f(f(x))) < d(x, f(x))

which is impossible. Thus x is the unique fixed point of f (and so of fn for

all n ≥ 2).

Let now x0 ̸= x be given, and define dn = d(fn(x0), x). Observe that

dn + 1 = d(fn + 1(x0), f(x)) < d(fn(x0), x) = dn.

Hence dn is strictly decreasing, and admits a lim r ≥ 0.

Let now fnk(x0) be a subsequence of fn(x0) converging to some z ∈ X.

Then

r = d(z, x) = lim
k→∞

dnk
= lim k → ∞dnk+1 = lim

k→∞
d(f(fnk(x0)), x) = d(f(z), x).

But if z ̸= x, then d(f(z), x) = d(f(z), f(x)) < d(z, x). Therefore any conver-

gent subsequence of fn(x0) has limit x, which, along with the compactness

of X, implies that converges to x Obviously, we can relax the compactness

of X by requiring that f(X) be compact (just applying the theorem on the

restriction of f on f(X)).

Arguing like in Corollary 1.5, it is also immediate to prove the following

Corollary 5.5.1. Let X be a compact metric space and let f : X → X. If fn

is a weak contraction, for some n ≥ 1, then f has a unique fixed point x ∈ X.
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5.1.2 A converse to the contraction principle

Assume we are given a set X and a map f : X → X. We are interested to

find a metric d on X such that (X, d) is a complete metric space and f is

a contraction on X. Clearly, in light of Theorem 1.3, a necessary condition

is that each iterate fn has a unique fixed point. Surprisingly enough, the

condition turns out to be sufficient as well.

Theorem 5.6 (Bessaga). Let X be an arbitrary set, and let f : X → X be

a map such that fn has a unique fixed point x ∈ X for every n ≥ 1. Then

for every ϵ ∈ (0, 1), there is a metric d = dϵ on X that makes X a complete

metric space, and f is a contraction on X with Lipschitz constant equal to ϵ.

Proof. Choose ϵ ∈ (0, 1). Let Z be the subset of X consisting of all elements

z such that fn(z) = x for some n ∈ N .

We define the following equivalence relation on X Z : we say that xy if

and only if fn(x) = fm(y) for some n,m ∈ N.

Notice that if fn(x) = fm(y) and fn
′
(x) = fm′(y) then fn+m′

(x) =

fm+n′
(x). But since x ̸∈ Z, this yields n+m′ = m+ n′ , that is, nm = n′−m′

. At this point, by means of the axiom of choice, we select an element from

each equivalence class. We now proceed defining the distance of x from a

generic y ∈ X by setting d(x, x) = 0, d(y, x) = ϵn if y ∈ Z with y ̸= x, where

n = minm ∈ N : fm(y) = x, andd(y, x) = ϵnm

if y ̸∈ Z, where n,m ∈ N are such that fn(x′) = fm(x), x′ being the selected

representative of the equivalence class [x]. The definition is unambiguous,

due to the above discussion. Finally, for any z, y ∈ X, we set

d(z, y) =

 d(z, x) + d(y, x) ifz ̸= y

0 ifx = y
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It is straightforward to verify that d is a metric. To see that d is complete,

observe that the only Cauchy sequences which do not converge to x are

ultimately constant. We are left to show that f is a contraction with Lipschitz

constant equal to ϵ. Let y ∈ X, y ̸= x. If y ∈ Z we have

d(f(y), f(x)) = d(f(y), x) ≤ ϵn = ϵϵ(n+1) = ϵd(y, x).

If y ̸∈ Z we have

d(f(y), f(x)) = d(f(y), x) = ϵnm = ϵϵn(m+1) = ϵd(y, x)

since yf(y). The thesis follows directly from the definition of the distance

5.1.3 Fixed points of non-expansive maps

Let X be a Banach space, C ⊂ X nonvoid, closed, bounded and convex, and

let f : C → C be a non-expansive map. The problem is whether f admits a

fixed point in C. The answer, in general, is false.

Example 12. Let X = c0 with the supremum norm. Setting C = B̄X(0, 1),

the map f : C → C defined by

f(x) = (1, x0, x1, · · · ), forx = (x0, x1, x2, · · · ) ∈ C

is non-expansive but clearly admits no fixed points in C.

Theorem 5.7 (Browder-Kirk). Let X be a uniformly convex Banach space

and C ⊂ X be nonvoid, closed, bounded and convex. If f : C → C is a

non-expansive map, then f has a fixed point in C.

We provide the proof in the particular case when X is a Hilbert space (the

general case may be found)

Proof. Let x ∈ C be fixed, and consider a sequence rn ∈ (0, 1) converging to

1. For each n ∈ N, define the map fn : C → C as

fn(x) = rnf(x) + (1rn)x.
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Notice that fn is a contractions on C, hence there is a unique xn ∈ C such

that fn(xn) = xn. Since C is weakly compact,xn has a subsequence (still

denoted by xn) weakly convergent to some x ∈ C. We shall prove that x is a

fixed point of f. Notice first that

lim
n→∞

(||f(x)xn||2||xxn||2) = ||f(x)x||2

Since f is non-expansive we have

||f(x)xn|| ≤ ||f(x)f(xn)||+ ||f(xn)xn||

≤ ||xxn||+ |f(xn)xn||

= ||xxn||+ (1rn)||f(xn)x||.

But rn → 1 as n→ ∞ and C is bounded, so we conclude that limn→∞ sup(||f(x)xn||2||xxn||2)≤

0

which yields the equality f(x) = x

Proposition 5.1. In the hypotheses of above Theorem, the set F of fixed

points of f is closed and convex.

Proof. The first assertion is trivial. Assume then x0, x1 ∈ F, with x0 ̸= x1,

and denote xt = (1t)x0 + tx1, with t ∈ (0, 1). We have

||f(xt)x0|| = ||f(xt)f(x0)|| ̸= ||xtx0|| = t||x1x0||

||f(xt)x1|| = ||f(xt)f(x1)|| ≤ ||xtx1|| = (1t)||x1x0||

that imply the equalities

||f(xt)x0|| = t||x1x0||

||f(xt)x1|| = (1t)||x1x0||.

The proof is completed if we show that f(xt) = (1t)x0 + tx1. This follows

from a general fact about uniform convexity, which is recalled in the next

lemma
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Lemma 5.8. Let X be a uniformly convex Banach space, and let α, x, y ∈ X

be such that

||αx|| = t||xy||, ||αy|| = (1t)||xy||,

for some t ∈ [0, 1]. Then α = (1t)x+ ty.

Proof. Without loss of generality, we can assume t ≥ 1/2. We have

||(1t)(αx)t(αy)|| = ||(12t)(αx)t(xy)||

≥ t|||xyk(12t)||αx||

= 2t(1t)||xy||.

Since the reverse inequality holds as well, and

(1t)||αx|| = t||αy|| = t(1t)||xy||

from the uniform convexity of X (but strict convexity would suffice) we get

||α(1t)xty|| = ||(1t)(αx) + t(αy)|| = 0

as claimed

5.1.4 The Riesz mean ergodic theorem

If T is a non-expansive linear map of a uniformly convex Banach space, then

all the fixed points of T are recovered by means of a limit procedure.

Definition 5.2. Projections- Let X be a linear space. A linear operator P :

X → X is called a projection in X if P 2x = PPx = Px for every x ∈ X.

NOTE P is the identity operator on ran(P), and the relations ker(P) =

ran(I P), ran(P) = ker(I P) and ker(P ) ∩ ran(P ) = 0 hold. Moreover

every element x ∈ X admits a unique decomposition x = y + zwithy ∈

ker(P )andz ∈ ran(P ).

Proposition 5.2. If X is a Banach space, then a projection P is continuous

if and only if X = ker(P )⊕ ran(P ).
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(The notation X = A ⊕ B is used to mean that A and B are closed

subspaces of X such that A ∩B = 0andA+B = X. )

Proof. If P is continuous, so is I P. Hence ker(P) and ran(P) = ker(I P) are

closed.

Conversely, let xn → x, and Pxn → y. Since ran(P) is closed, y ∈ ran(P ),

and therefore Py = y. But Pxnxn ∈ ker(P ), and ker(P) is closed. So we have

xy ∈ ker(P ), which impliesvPy = Px. From the closed graph theorem, P is

continuous

Theorem 5.9 (F. Riesz). Let X be a uniformly convex Banach space. Let

T : X → Xbe a linear operator such that

||Tx|| ≤ ||x||,∀x ∈ X

Then for every x ∈ X the limit

px = lim
n→∞

x+ T x + · · ·+ T nx

n+ 1

exists. Moreover, the operator P : X → X defined by Px = px is a continuous

projection onto the linear space M = y ∈ X : Ty = y.

Proof. Fix x ∈ X, and set

C = ¯co(x, Tx, T 2x, T 3x, · · ·)

C is a closed nonvoid convex set, and from the uniform convexity of X there

is a unique px ∈ C such that

µ = ||px|| = inf ||z|| : z ∈ C

Select ϵ > 0. Then, for px ∈ C, there arem ∈ N and nonnegative constants

α0, α1, · · · , alpham with
∑m

j=0 αj = 1such that, setting

z =
m∑
j=0

αjT
jx
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thereholds

——pxz|| < ϵ

In particular, for every n ∈ N ,∣∣∣∣∣∣∣∣z + Tz + · · ·+ T nz

n+ 1

∣∣∣∣∣∣∣∣ ≤ ||z|| ≤ µ+ ϵ.

Notice that

z+Tz+· · ·+T nz = (α0x+· · ·+αmT
mx)+(α0Tx+· · ·+αmT

m+1x)+· · ·+(α0T
nx+· · ·+αmT

m+nx)

Thus, assuming n is strictly greater than m,we get

z + Tz + · · ·+ T nz = x+ Tx+ · · ·+ T nx+ r

where

r = (α01)x+· · ·+(α0+α1+· · ·+αm11)T
m1x+(1α0)T

1+nx+· · ·+(1α0α1 · · ·αm1)T
m+nx.

Therefore

x+ Tx+ · · ·+ T nx

n+ 1
=
z + Tz + · · ·+ T nz

n+ 1
− r

n+ 1

Since ∣∣∣∣∣∣∣∣ r

n+ 1

∣∣∣∣∣∣∣∣ ≤ 2m||x||
n+ 1

upon choosing n enough large such that 2m||x|| < ϵ(n+ 1) we have∣∣∣∣∣∣∣∣x+ Tx+ · · ·+ T nx

n+ 1

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣z + Tz + · · ·+ T nz

n+ 1

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ r

n+ 1

∣∣∣∣∣∣∣∣ ≤ µ+ 2ϵ

On the other hand, it must be

∣∣∣∣∣∣∣∣x+ Tx+ · · ·+ T nx

n+ 1

∣∣∣∣∣∣∣∣ ≥ µ

Then we conclude that

lim
n→∞

∣∣∣∣∣∣∣∣x+ Tx+ · · ·+ T nx

n+ 1

∣∣∣∣∣∣∣∣ = µ
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This says that the above is a minimizing sequence in C, and due to the

uniform convexity of X, we gain the convergence

lim
n→∞

x+ Tx+ · · ·+ T nx

n+ 1
= px

We are left to show that the operator Px = px is a continuous projection

onto M . Indeed, it is apparent that if x ∈M then px = x.

In general,

Tpx = lim
n→∞

Tx+ T 2x+ · · ·+ T+1nx

n+ 1
= px + lim

n→∞

T n+1xx

n+ 1
= px.

Finally, P 2x = PPx = Ppx = px = Px. The continuity is ensured by the

relation ||px|| ≤ ||x||.

When X is a Hilbert space, P is actually an orthogonal projection. This

follows from the next proposition.

Proposition 5.3. Let H be a Hilbert space,P = P 2 : H → H a bounded

linear operator with ||P || ≤ 1. Then P is an orthogonal projection.

Proof. Since P is continuous, ran(P) is closed. Let then E be the orthogonal

projection having range ran(P). Then

P = E + P (IE)

. Let now x ∈ ran(P )⊥.

For any ϵ > 0 we have

||P (Px+ ϵx)|| ≤ ||Px+ ϵx||

which implies that

||Px||2 ≤ ϵ

2 + ϵ
||x||2

Hence Px = 0, and the equality P = E holds
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The role played by uniform convexity in last Theorem is essential, as the

following example shows.

Example 13. Let X = l∞, and let T ∈ L(X) defined by

Tx = (0, x0, x1, · · · ), forx = (x0, x1, x2, · · · ) ∈ X

. Then T has a unique fixed point, namely, the zero element of X. Nonethe-

less, if y = (1, 1, 1, · · · ), for every n ∈ N we have

∣∣∣∣∣∣∣∣y + Ty + · · ·+ T ny

n+ 1

∣∣∣∣∣∣∣∣ = ||(1, 2, · · · , n, n+ 1, n+ 1, · · · )||
n+ 1

= 1.

5.2 The Brouwer fixed point theorem

Definition 5.3. Let Dn = x ∈ ℜn : ||x|| ≤ 1. A subset E of Dn is called a

retract of Dn if there exists a continuous map r : Dn → E(called retraction)

such that r(x) = x for every x ∈ E

Lemma 5.10. The set Sn1 = x ∈ Rn : ||x|| = 1is not a retract of Dn .

Theorem 5.11 (Brouwer). Let f : Dn → Dn be a continuous function. Then

f has a fixed point x ∈ Dn

5.3

Theorem 5.12 (Fundamental of algebra). Let p(z) = a0 + a1z + · · · + anz
n

be a complex polynomial of degree n ≥ 1. Then there exits z0 ∈ C such that

p(z0) = 0.

Proof. For our purposes, let us identify C with R2.

Suppose without loss of generality an = 1. Let r = 2 + |a0| + · · · + |an1|.
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Define now the continuous function g : C → C as

g(z) =

 z − p(z)ei(1−n)θ

r |z| ≤ 1

z − p(z)e(1−n)

r |z| > 1

where z ∈ C with θ ∈ [0, 2π). Consider now the compact and convex set

C = z : |z| ≤ r. In order to apply the Brouwer fixed point theorem we need

to show that g(C) ⊂ C.

Indeed, if |z| ≤ 1,

|g(z)| ≤ |z|+ |p(z)|
r

≤ 1 +
1 + |a0|+ · · ·+ |an1|

r
≤ 2 ≤ r.

Conversely, if 1 < |z| ≤ r we have |g(z)| ≤
∣∣∣z − p(z)

rzn−1

∣∣∣ = ∣∣∣z − z
r −

a0+a1z+···+an−1z
n−1

rzn−1

∣∣∣
≤ r − 1 + |a0|+···+|an1|

r ≤ r − 1 + r−2
r ≤ r

C is invariant for g, and so g has a fixed point z0 ∈ C, which is clearly a

root of p
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Chapter 6

WEAK CONTRACTION

PRINCIPLE IN b-METRIC SPACE

6.1 b-Metric Space

Definition 6.1. Let X be a non-empty set and s ≥1 be any real number.A

function d : X ×X → R+ is called a b-metric provided that, for all x,y,z ∈X

1. d(x, y)=0 ⇔ x = y

2. d(x, y) = d(y, x)

3. d(x, z) ≤ s
(
d(x, y) + d(y, z)

)
A pair (X, d) is called b-metric space

• If s=1 , then it reduces to the usual metric space

Example 14. Let X= lp(0<p<1)

Let d : lp × lp → R+ by

d(xn, yn) =
(∑∞

n=1 | (xn − yn) |p
) 1

p

where xn, yn ∈ lp

Let x = xn, y = yn ∈ lp

d(x, y) = 0 ⇔
(∑∞

n=1 | (x− y) |p
) 1

p

= 0

⇔
(∑∞

n=1 | (x− y) |p
)
= 0

⇔| (x− y) |p= 0
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⇔ x− y = 0

⇔ x = y

In the similar way we will get, d(x, y) = d(y, x)

d(x, y) ≤
d
(
d(x, z) + d(z, y)

)
2p

Then lp is a b-metric space

Definition 6.2. Let (X, d) be a b-metric space.Then a sequence (xn) ∈ X is

called a cauchy sequence iff for all ϵ > 0, there exist n(ϵ) ∈ N such that for

each m ≥ n(ϵ), d(xn, yn) < ϵ

Definition 6.3. Let (X, d) be a b-metric space.Then a sequence (xn) in X is

convergent iff for all ϵ > 0, there exist x ∈ X such that d(xn, x) < ϵ whenever

n ≥ n(ϵ) where n(ϵ) ∈ N

Definition 6.4. The b-metric space is complete if every cauchy sequence in

it is convergent

6.2 Result

Theorem 6.1. Let (X, d, s) be a complete b-metric space and s ≥1 be a given

real number.Let F : X → X be a mapping such that

d
(
F (x), F (y)

)
≤ d(x, y)− Φ

(
d(x, y)

)
where Φ : R+ → R is a function such that limn→∞

(
infΦ(tn)

)
> (s − 1)l

whenever limsup(tn) ≥ l > 0 , then F has a unique fixed point

Proof. Let x0 ∈ X be any element.

We construct a sequence (xn) by xn = F (xn−1) , for n ≥ 1

Then

d(xn, xn+1) = d(F (xn−1), F (xn))
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≤ d(xn−1, xn)− Φ
(
d(xn−1, xn)

)

⇒ d(xn, xn+1) < d(xn−1, xn)

It follows that d(xn−1, xn) is a monotone decreasing sequence of non-negative

real number and hence

d(xn−1, xn) → lasn→ ∞ (6.1)

Since l > 0,

limn→∞inf
(
Φ(d(xn−1, xn))

)
> 0

Taking limit on (1),

l ≤ l − limn→∞inf
(
Φ(d(xn−1, xn))

)
which is a contradiction

hencelimn→∞d(xn−1, xn) = 0

Now we prove that (xn) is a cauchy sequence .

Suppose (xn) is not cauchy sequence.

Then there exist ϵ > 0, k > 0 for which there exists two sequences (xmk
)

and (xnk
) with nk > mk > k such that

d(xmk
, xnk

) ≥ ϵ

d(xmk
, xnk−1

) < ϵ

Then for all k > 0,
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ϵ ≤ d(xmk
, xnk

)

< s
(
d(xmk

, xnk−1
) + d(xnk−1

, xnk
)
)

≤ sϵ+ sd(xnk−1
, xnk

)

Taking limit infimum ,

ϵ ≤ limk→∞inf
(
d(xmk

, xnk
)
)

≤ limk→∞sup
(
d(xmk

, xnk
)
)

≤ sϵ

For all k > 0,

d(xmk−1
, xnk−1

) ≤ s
(
d(xmk

, xmk−1
) + d(xmk

, xnk−1
)
)

≤ sd(xmk−1
, xmk

) + s2
(
d(xmk

, xnk
) + d(xnk

, xnk−1
)
)

and,

d(xmk
, xnk

) ≤ s
(
d(xmk

, xmk−1
) + d(xmk−1

, xnk
)
)

≤ sd(xmk
, xmk−1

) + s2
(
d(xmk−1

, xnk−1
) + d(xnk−1

, xnk
)
)

Taking infimum,
ϵ

s2
≤ limk→∞inf(d(xmk−1

, xnk−1
))

≤ limk→∞sup(d(xmk−1
, xnk−1

))
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Put x = xmk
and y = xnk−1

,then

d(xmk
, xnk

) ≤ d(xmk−1
, xnk−1

)− Φ
(
d(xmk−1

, xnk−1
)
)

then

Φ
(
d(xmk−1

, xnk−1
)
)
≤ d(xmk−1

, xnk−1
)− d(xmk

, xnk
)

Taking limit supremum,

limk→∞sup
(
Φ(d(xmk−1

, xnk−1
))
)
≤ limk→∞sup(d(xmk−1

, xnk−1
))−limk→∞inf(d(xmk−1

, xnk−1
))

then, limk→∞sup
(
Φ(d(xmk−1

, xnk−1
))
)
> (s− 1)ϵ

which is a contradiction.

therefore (xn) is a cauchy sequence and hence (xn) → x ∈ X ,since (X, d)

is complete.Then

d(x, F (x)) ≤ s
(
d(x, xn+1) + d(xn+1, F (x))

)
= s

(
d(x, xn+1) + d(F (xn), F (x))

)
= s(d(x, xn+1) + s2

(
d(xn, x) + Φ(d(xn, x))

)
≤ s(d(x, xn+1)) + s2(d(xn, x))

Taking n → ∞, d(x, F (x)) = 0 i.e, x = F (x) If x and y are two fixed points

of F then d(x, y) > 0 and

d(x, y) = d(F (x), F (y))

= d(x, y)− Φ(d(x, y))

≤ d(x, y)

which is a contradiction. Hence x = y

⇒ Fixed points are unique.

Example 15. Let x=[0,1] be equipped with the b-metric d(x, y) =| x − y |2

for all x,y ∈ X ,clearly d is a metric on d.
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Then (X, d) is a b-metric space with parameters s = 2.Also (X, d) is com-

plete metric space,since [0,1] is closed and bonded set.

Let F : X → X as,

F (x) = x− x2

2
, x ∈ [0, 1]

and Φ : R+ → R by,

Φ(t) =
t2

2
t ∈ [0, 1]

Then for x, y ∈ X,

d(F (x), F (y)) = | F (x)− F (y) |2

= | (x− x2

2
)− (y − y2

2
) |2

≤ | (x− y)− (
x2

2
− y2

2
) |2

≤ ∗d(x− y)− Φ(d(x, y))

F has a unique fixed point in [0,1]

F (x) = x⇒ x− x2

2
= x

⇒ x2

2
= 0

⇒ x = 0

x = 0 is the unique fixed point of F
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Chapter 7

CO-CYCLIC WEAK

CONTRACTION AND FIXED

POINTS

7.1 Cyclic Representation

Definition 7.1. Let X be a non-empty set,m a positive integer and F : X →

X a self-map.X =
∪m

i=1Ai is said to be a cyclic representation of X with

respect to the map F if the following hold:

1. Ai, i = 1, 2, ...,m are nonempty subset of X

2. F (A1) ⊂ A2, F (A2) ⊂ A3, ......., F (Am−1) ⊂ Am, F (Am) ⊂ A1

Example 16. Let X=[0,2] , A1=[0,1] ,A2 = [12 ,
3
2 ] , A3 = [1, 2]

Define a self map F on X by,

F (x) = x+
1

x
ifx ∈ [0,

1

2
]

F (x) = 1ifx ∈ (
1

2
,
3

2
]

F (x) = x− 1ifx ∈ (
3

2
, 2]

Then,
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F (A1) = [
1

2
, 1] ⊂ A2

F (A2) = 1 ⊂ A3

F (A3) = 1 ⊂ A1

therefore X =
∪3

i=1Ai ia a cyclic representation of X with respect to F

Theorem 7.1. Let X be a compact metric space ,m a positive integer and

F : X → X a continuous operator.suppose that A1, A2,......Am are nonempty

subsets of X , X =
∪m

i=1Ai satisfying:

1. X =
∪m

i=1Ai is a cyclic representation of X with respect to F

2. d(F (x), F (y)) ≤ d(x, y)− Φ(d(x, y)) for any x ∈ Ai and y ∈ Ai+1 where

Φ ∈ F where F=
{
Φ : R+ → R+ such that Φ is nondecreasing , Φ(0) =

0,Φ(t) > 0 for t > 0
}

Then F has a unique fixed point .

Definition 7.2. Let X be a nonempty.Two self maps F ,G ; F,G : X → X

are said be weakly compatible if then commute at their coincidence points.If

x ∈ X such that F (x) = G(x),then (FG)(x) = (GF )(x)

7.2 Co-cyclic Representation

Definition 7.3. Let X be a nonempty set,m a positive integer and F,G :

X → X be two self maps.X =
∪m

i=1Ai is said be a co-cyclic representation

of X between F and G if:

1. Ai, i =1,2,....m are nonempty subset of X
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2. G(A1) ⊂ F (A2),G(A2) ⊂ F (A3),.........,G(Am) ⊂ F (A1)

Example 17. Let x = [0, 1] and A1 = [0, 12 ] and A2 = [ 1
2,1 ]

Define F and G on X by ,

G(x) =
{
x+ 1

2 if x ∈ [0, 12 ] , 1− x if x ∈ (12 , 1]

and F (x) =
{
x if x ∈ [0, 12 ], 2x− 1 if x ∈ (12 , 1]

Now G(A1)= [12,1] and F (A2)=[
1
2,1]

G(A2)=[0,
1
2] and F (A2)=[0,12]

Therefore G(A1) = F (A2) and G(A2) = F (A1)

RightarrowX =
∪2

i=1Ai is a co-cyclic representation of X between F and G

Definition 7.4. Let (X, d) be a metric space,m is a positive integer,A1 ,

A2 ,....Am a closed nonempty subsets of X, and X =
∪m

i=1Ai.An operator

G : X → X is said to be co-cyclic weak contraction if there exist an operator

F : X → X such that

1. X =
∪m

i=1 is a cyclic representation of X between F and G

2. d(G(x), G(y)) ≤ d(F (x), F (y))− Φ
(
d(F (x), F (y))

)
, for any x ∈ Ai and

y ∈ Ai+1 where Am+1 = A1 and Φ ∈ F

Theorem 7.2. Let (X, d) be a compact metric space and F,G : X → X be

two continuous operators.Suppose that m is a positive integer,A1, A2,.....,Am

are nonempty subsets of X and X =
∪m

i=1Ai satisfying,

1. X =
∪m

i=1 is a cyclic representation of X between F and G

2. d(G(x), G(y)) ≤ d(F (x), F (y))− Φ
(
d(F (x), F (y))

)
, for any x ∈ Ai and

y ∈ Ai+1 where Am+1 = A1 and Φ ∈ F

If the pair of operators (F,G) are weakly compatible on X then F and G have

a unique common fixed point in X.
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Proof. Let x0

∈ X

Since G(Ai) ⊂ F (Ai+1) for each i=1,2,3,...,m and G(Am) ⊂ F (A1), there

exists x1 ∈ A such that G(x0) = F (x1)

On continuing the process, inductively we get a sequence xn ∈ X such that

G(xn) = F (xn+1) for each n=0,1,2....

If there exist n0 ∈ N with G(xn0+1) = G(xn0
) = F (xn0+1) and thus F and G

have coincidence point xn0+1

Suppose that xn+1 ̸= xn∀n=0,1,2....

We have to show that the sequence {d(F (xn), F (xn+1))} is a non increasing

sequence.

therefore for each n > 0 ,there exist in ∈ {1, 2, 3, ...m} such that xn−1 ∈ Ain−1

and xn ∈ Ain and,

d(F (xn), F (xn+1)) = d(G(xn−1), G(xn))

≤ d(F (xn−1), F (xn))− Φ
(
d(F (xn−1), F (xn))

)
≤ d(F (xn−1), F (xn)) for each n=0,1,2....

Hence {d(F (xn), F (xn+1))} is a non-increasing sequence of non negative real

and hence converges to a limit l > 0.

Letting n→ ∞ in the above inequality

l ≤ l − limn→∞Φ
(
d(F (xn), F (xn+1))

)
≤ l

and hence,

limn→∞Φ
(
d(F (xn), F (xn+1))

)
= 0

Claim: l = 0

Suppose l > 0

Since l = inf{d(F (xn), F (xn+1)) : n ∈ N}

0 < l < d(F (xn), F (xn+1)) for n =0,1,2,.... and since Φ is non decreasing and

Φ(t) > 0 for t ∈ (0,∞)
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We get,

0 < Φ(l) ≤ Φ
(
d(F (xn), F (xn+1))

)
for n =0,1,2,....

and hence letting n→ ∞,

0 < Φ(l) ≤ limn→Φ
(
d(F (xn), F (xn+1))

)
which is a contradiction , therefore l = 0

Hence ,

limn→∞(d(F (xn), F (xn+1)) = 0

Since G(xn) = F (xn+1) for each n =1,2,3,.....

inf{(d(F (x), G(x)) : x ∈ X} = 0

Since the mapping X to R+ defined by x 7→ d(F (x), G(x)) is continuous and

X is compact.

Therefore We can find u ∈ X such that

(d(F (u), G(u)) = inf{(d(F (u), G(u)) : x ∈ X}

But (d(F (u), G(u)) = 0

Hence F (u) = G(u) = z (say)

i.e, (F,G) has a point of coincidence.

Since (F,G) is weakly compatible,

G(z) = G(F (u))

= F (G(u))

= F (z)

Hence G(z) = F (z)

Claim : z = G(z)

Suppose z ̸= G(z)

Then d(z,G(z)) = d(G(u), G(z))

≤ d(F (u), F (z))− Φ
(
d(F (u), F (z))

)
≤ d(z,G(z))− Φ

(
d(z,G(z))

)
⇒ Φ

(
d(z,G(z))

)
≤ 0
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But Φ
(
d(z,G(z))

)
≥ 0

Hence Φ
(
d(z,G(z))

)
= 0

Since Φ ∈ F ,

d(z,G(z)) = 0

⇒ G(z) = z

therefore G(z) = z = F (z)

Now we have to prove the uniqueness of fixed point.for that,

Suppose z and w are common fixed points of F and G.

Since X =
∪m

i=1Ai is co-cyclic representation of X between F and G,

We have z, w ∈
∩m

i=1Ai

Therefore d(z, w) = d(G(z), G(w))

≤ d(F (z), F (w))− Φ
(
d(F (z), F (w))

)
≤ d(z, w)− Φ(d(z, w))

therefore Φ(d(z, w)) = 0

Sice Φ ∈ F ,

d(z, w) = 0

⇒ z = w

Hence the result.

• Note that if we choose F = Ix, the identity map(which is weakly com-

patible) in the above theorem,then the theorem gives us the unique fixed

point of G

Corollary 7.2.1. Let (X, d) be a compact metric space and G : X → X be

a continuous operator.Suppose that m is a positive integer,A1 , A2 ,....., Am

are nonempty subsets of X and X =
∪m

i=1Ai satisfying:

1. X =
∪m

i=1 is a cyclic representation of X with respect to G
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2. d(G(x), G(y)) ≤ d(x, y)−Φ(d(x, y)), for any x ∈ Ai and y ∈ Ai+1 where

Am+1 = A1 and Φ ∈ F

Then G has a unique fixed point in X.
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Conclusion 
 

 

In this project we have discussed about the theory of fixed point and theorems related to 
the existence and properties of fixed point. We have also discussed about the two major 
areas of fixed point theory , one is the contraction type mappings on complete metric 
spaces and second one is the fixed point theory on continous operators on compact and 
convex subsets of a normed space. Banach Contraction Principle , the fundamental 
principle in the field of functional analysis is also discussed here. We have also gone 
through the establishment of the extension of  Banach Contraction Principle for weak 
contraction mapping and even the co-cyclic representation. 
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