TB174205C	Reg.No
	Nome

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2019

(2017 Admissions Regular, 2016 Admissions Improvement/Supplementary & 2015 Admissions Supplementary)

SEMESTER IV- CORE COURSE (COMPUTER APPLICATIONS) CAM4B04TB - VECTOR CALCULUS, THEORY OF EQUATIONS AND GRAPH THEORY

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark

- 1. Find parametric equation for the line through (-2,0,4) parallel to $\mathbf{v} = 2\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$.
- 2. Find the gradient field of f(x,y,z) = xyz.
- 3. Define symmetric functions of the roots.
- 4. Define reciprocal equations.
- 5. Define simple Graph.
- 6. When a walk is said to be a path?

(6x1=6)

PART B

II Answer any seven questions. Each question carries 2 marks

- 7. Find parametric equations for the line through P(-3,2,-3) and Q(1,-1,4).
- 8. Find the point where the line $x = \frac{8}{3} + 2t$, y = -2t, z = 1+t intersects the plane 3x + 2y + 6z = 6.
- 9. Evaluate $\int (\cos t \, i + j 2tk) dt$.
- 10. State fundamental theorem of line integrals.
- 11. Verify divergence theorem for the field $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ over the sphere $x^2 + y^2 + z^2 = a^2$.
- 12. A coil spring lies along the helix $r(t) (\cos 4t) i + (\sin 4t) j + tk$, $0 \le t \le 2\pi$. The spring's density is a constant, $\delta = 1$ Find the spring's mass and moment of inertia about the z-axis.
- 13. If α, β, γ are the roots of $x^3 x 1 = 0$, then find the equation whose roots are $\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta}, \frac{1+\gamma}{1-\gamma}$.

1

- 14. Solve $x^4 5x^3 + 4x^2 + 8x 8 = 0$, given that one of the root is $1-\sqrt{5}$.
- 15. Define
 - i)Path ii) Cut vertex iii) Bridge iv) trail
- 16. Let G be connected graph. Then prove that G is a tree if and only if every edge of G is a bridge.

(7x2=14)

P.T.O.

PART C

III. Answer any five questions. Each question carries 6 marks

- 17. a) Find the derivative of $f(x,y) = x^2 \sin 2y$ at the point $(1, \frac{\pi}{2})$ in the direction of y = 3i 4j.
 - b) Find an equation for the tangent to the ellipse $\frac{x^2}{4} + y^2 = 2$.
- 18. a) Estimate how much the value of $f(x,y,z) = y \sin x + 2yz$ will change if the point P(x,y,z) moves 0.1 unit from $P_0(0,1,0)$ straight toward $P_1(2,2,-2)$.
 - b) Also find plane tangent to the surface $z = 1 \frac{1}{10}(x^2 + 4y^2)$ at $(1, 1, \frac{1}{2})$.
- 19. a) A fluid's velocity field F = xi + zj + yk. Find the flow along the helix $r(t) = (\cos t) i + (\sin t)j + tk$, $0 \le t \le \frac{\pi}{2}$.
 - b) Also find the parametrization of the cylinder $x^2 + (y 3)^2 = 9$, $0 \le z \le 5$.
- 20. a) State Green's theorem (normal form and tangential form)
 - b) Using Green's theorem, calculate the outward flux of the field $F(x,y) = x^2i + xyj$ across the square bounded by the lines x = 0, y = 0, x = a, and y = a (a > 0)
- 21. a)prove that every equation of the n th degree has exactly n roots.
 - b) If α, β, γ are the roots of the function $f(x) = x^3 + P_1 x^2 + P_2 x + P_3 = 0$, find the equation whose roots are $\alpha^3, \beta^3, \gamma^3$.
- 22. Solve $x^3 27x + 54 = 0$, using Cardan's method.
- 23. A connected graph G with n vertices has at least n-1 edges. Prove.
- 24. Prove: a graph G is connected if and only if it has a spanning tree.

(5x6=30)

PART D

IV. Answer any two questions. Each question carries 15 marks

- 25. a) Prove that the curvature of a circle of radius a is $\frac{1}{a}$.
 - b) Find and graph the osculating circle of the parabola $y = x^2$ at the origin.
- 26. a) Find the net outward flux of the field $F = \frac{x^i + y^j + z^k}{\rho^3}$, $\rho = \sqrt{x^2 + y^2 + z^2}$ across the boundary of the region $D: 0 < a^2 \le x^2 + y^2 + z^2 \le b^2$.
 - b) Verify the circulation form of green's theorem on the annular ring

$$R: h^2 \le x^2 + y^2 \le 1$$
, $0 < h < 1$, if $M = \frac{-y}{x^2 + y^2}$, $N = \frac{x}{x^2 + y^2}$.

- 27. Using Ferrari's method, solve $x^4 10x^2 20x 16 = 0$.
- 28. a) Let e be an edge of the graph G and, let G-e be the subgraph obtained by deleting e. Then prove that $\omega(G) \le \omega(G e) \le \omega(G) + 1$.
 - b) Prove: An edge e of a graph G is a bridge if and only if e is not part of any cycle in G.

(2x15=30)