TM171280E	Reg. No:

Name:		•				•				•	•		•	•	•	•	•	•	•	•
-------	--	---	--	--	--	---	--	--	--	---	---	--	---	---	---	---	---	---	---	---

M. A. DEGREE (C.S.S.) EXAMINATION, NOVEMBER 2017 SEMESTER I – ECONOMICS

(2017 Admission Regular, 2016 Admission Supplementary/Improvement & 2015 Admission Supplementary)

EC1C05M - QUANTITATIVE METHODS FOR ECONOMIC ANALYSIS - I

Time: Three Hours Maximum Marks: 75

PART A

- I. Answer any five questions. Each question carries 3 marks.
- 1. Define inverse of a matrix.
- 2. Explain Input- Output model.
- 3. Give applications of Euler's theorem in economics.
- 4. Explain 1st and 2nd order partial derivatives.
- 5. Integrate $(\log x)^2$ with respect to x.
- 6. What are slack and surplus variables?
- 7. What are shadow prices?

(5x3=15)

PART B

II. Answer any six questions. Each question carries 5 marks.

8. Find AB and BA if A =
$$\begin{bmatrix} 6 & 0 \\ 9 & 5 \\ -1 & -2 \end{bmatrix}$$
 and B = $\begin{bmatrix} 0 & 10 & 6 \\ 9 & 20 & 12 \end{bmatrix}$

- 9. Show that $\begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & -3 \\ 2 & -2 & 8 \end{bmatrix}$ is non-singular.
- 10. Examine whether the input output system with the coefficient matrix $\begin{bmatrix} 0.8 & 0.2 \\ 0.9 & 0.7 \end{bmatrix}$ is feasible.
- 11. The demand functions of two commodities X and Y are $P_1 = 8 2x$ and $P_2 = 14 y^2$ and joint cost function is C = 10 + 4x + 2y. Determine the quantities that maximize the profit of the monopolist and also the maximum profit.
- 12. Find the total differential of $z = x^2 2xy^2 + y^2$
- 13. Verify Euler's theorem for the Cobb- Douglass production function.
- 14. Integrate (i) $(lx^2 + mx + n)^3 (2lx + m)$ with respect to x. (ii) $5e^{3x}$ with respect to x
- 15. Find the dual of the following L.P.P. Minimize z = 4x + 2y subject to the conditions $x + 2y \ge 20$, $3x + y \ge 30$, $4x + 3y \ge 60$, $x \ge 0$, $y \ge 0$.
- 16. Explain the various steps involved in solving L.P.P. by Simplex method.

(6x5=30)

1 P.T.O

PART C

- III. Answer any two questions. Each question carries 15 marks.
- 17. Given the technology matrix and final demand calculate the equilibrium output levels

$$A = \begin{bmatrix} 0.125 & 0.333 & 0.250 \\ 0.500 & 0.167 & 0.250 \\ 0.250 & 0.167 & 0.250 \end{bmatrix} \qquad \text{and} \qquad F = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$

18. The average revenue (AR) and total cost (TC) of a monopolist are given by

$$AR = 16 - 2Q, TC = 20 + 4Q - Q^2.$$

Find *a*) Profit maximizing output.

- b) equilibrium price.
- c) Maximum profit.
- 19. (a) Explain the applications of integration in Economics.
 - (b) Find the producers surplus when the supply function is given by p = 8 + 2q and equilibrium price is Rs. 14.
- 20. Solve the following Linear Programming Problem using the Graphical method Maximize z = 4x + 10y,

Subject to the constraints $2x + y \le 50$

$$2x + 5y \le 100$$

$$2x + 3y \le 90$$

$$x, y \ge 0$$

(2x15=30)