

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, APRIL 2018 (2014 Admission Supplementary) SEMESTER II - COMPLEMENTARY COURSE (STATISTICS) STA2TRV - THEORY OF RANDOM VARIABLES

(Complementary for Mathematics, Physics and Core for Computer Applications)

Time: Three Hours Maximum Marks: 80

Use of Scientific calculators and Statistical tables are permitted.

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. State the properties of p.d.f. of a random variable.
- 2. If the p.d.f. of a random variable X is $f(x) = kx^2$; 0 < x < 1, find k.
- 3. Define distribution function of a random variable X.
- 4. For a discrete random variable X, show that E(aX + b) = aE(X) + b.
- 5. If the moment generating function of a random variable X is $(1-t)^{-1}$, find E(X).
- 6. If $f(x) = \frac{1}{2}$, -1 < x < 1 is the p.d.f. of a random variable X, find $\varphi_X(t)$.
- 7. Give the formula for Bowley's co-efficient of skewness.
- 8. What are the limits within which the correlation co-efficient of a bivariate data must lie?
- 9. What is a Scatter diagram?
- 10. Give the relation between regression co-efficients and correlation co-efficient of a bivariate data.

(10x1=10)

PART B

II. Answer any eight questions. Each question carries 2 marks.

- 11. Distinguish between Discrete and Continuous random variables.
- 12. Can the following be a probability density function?

$$g(x) = \frac{1}{2} \text{ for } x = 1$$

- = 2/3 for x = 0
- = $\frac{1}{4}$ for x = 2 and 0 elsewhere.
- 13. Find k if f(x) = kx(1-x); $0 \le x \le 1$ and 0 elsewhere is a p.d.f of a continuous random variable.
- 14. For any two independent random variables X and Y, show that E(XY) = E(X) E(Y).
- 15. Define characteristic function of a random variable and state its important properties.
- 16. The joint p.d.f. of a bivariate random variable (X, Y) is f(x, y) = x + y; 0 < x < 1, 0 < y < 1, obtain the marginal p.d.f. of Y.
- 17. What is Sheppard's correction? Write down the Sheppard's correction for the first four moments.
- 18. The first three raw moments of a distribution are 1, 3 and 5 respectively. Find s₁.
- 19. What are the normal equations to fit a curve of the form y = a + bx to a given bivariate data?

1

P.T.O

20	Find Spear	man's	rank c	orrelation	on co-ef	ficient	from th	e follos	ving dat	· a			
20.	Individuals		A	В	C	D	E	F	G	H	I	J	
	Rank before		1					2		10	8	4	
	Rank after		6	8	3	2		10	5		4	1	
21											'	•	
	Show that the regression lines of a bivariate data intersect at (x, y) . If the two regression equations of a bivariate data are $14x + 12y - 3 = 0$ and												
22.	12x +21y + 10 = 0, find co-efficient of correlation between x and y.												
	12X +21y -	+ 10 –	o, ma	1 00-611	icient of	Coner	ation be	tween 2	X and y.		(8v2	= 16)	
					P	ART (3				(OAZ	– 10)	
III.	III. Answer any six questions. Each question carries 4 marks.												
23.	Write down the probability distribution of X and Y, where X denotes the sum of the												
	numbers obtained and Y denotes the maximum of the numbers obtained.												
24.	A random variable X has p.d.f. $f(x) = \frac{1}{4}$; -2 < x < 2. Obtain the p.d.f. of Y=X ² .												
	Find the moment generating function of a random variable X whose p.d.f is												
	$f(x) = a^{x}b$; $x = 0,1,2,$, where $a + b = 1$. Hence find $V(X)$.												
26.	State and prove Cauchy-Schwartz inequality.												
27.	If X and Y are any two random variables, show that $E(E(X Y)) = E(X)$.												
28.	For a distribution mean =3, variance = 4, $s_1 = +1$ and $s_2 = 2$. Obtain the first four												
	moments a	bout z	ero.										
29.	Fit an equation of the form $y = ax + b$ to the following data												
	x: 1	3	5	7	8	10							
	2			17		20							
30.	Show that Karl Pearson's co-efficient of correlation is independent of change of origin												
21	and scale.												
31.	31. Derive the expression for the angle between the two regression lines of a bivariate data.												
	(6x4 = 24)												
					P	ART I)						
IV. Answer any two questions. Each question carries 15 marks.													
32.	32. Define conditional expectation and conditional variance If $f(x,y) = x+y$; $0 < x < 1$, $0 < y < 1$ is												
	the joint p.d.f. of (X,Y) , find correlation between X and Y.												
33.	What is Sk	ewnes	s? Obt	ain the	moment	measu	re of Sk	ewness	s from th	ne follo	wing da	ta	
	Variabl		5	10	15	20	25	30	35				
	Frequen	ncy	4	38	65	90	70	42	6				
34.	Find Karl	Pearson	n's co-	efficien	t of con	relation	and Sp	earman	's rank	correlat	ion		
	co-efficien	t from	the fol	llowing	data								
		109	112	87	98	120	98	100	98	118			
		73	85	70	76	82	65	73	68	80			
35. Given the following observations on a bivariate data (x,y) , find the most probable value of x when $y = 72$													
		t x whe 59	en y = 65	72 45	52	60	62	70	55	45	49		
		75	70	55	65	60	69	80	65	5 9	61		
	,												

(2x15 = 30)