TB142340C	Reg. No:
	==-8

Name:	
1 Julie	

B.Sc. DEGREE (C.B.C.S.S) EXAMINATION, APRIL 2018

(2014 Admission Supplementary)

SEMESTER II – COMPLEMENTARY COURSE (MATHEMATICS) MAT2ICM – INTEGRAL CALCULUS AND MATRICES

(For Chemistry & Physics)

Time: 3 Hours Maximum marks: 80

PART A

- I. Answer all questions. Each question carries 1mark.
- 1. Find $\int_0^{\pi} \cos x \, dx$.
- 2. Let $\int_0^2 f(z)dz = 3$. Find $\int_2^0 f(z)dz$.
- 3. Find $\int_0^2 \sqrt{y+1} \, dy$.
- 4. Let f be an odd function. Find $\int_{-1}^{1} f(x)dx$.
- 5. Find $\int_0^1 2x \sqrt{x^2 + 1} \ dx$.
- 6. Define rank of a matrix.
- 7. Define singular matrix.
- 8. State Cayley Hamilton theorem.
- 9. Find $\begin{vmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 2 & 4 & 6 \end{vmatrix}$.
- 10. Find $\int_{0}^{1} \int_{0}^{1} (x+y) dy dx$.

 $(10 \times 1 = 10)$

PART B

- II. Answer any eight questions. Each question carries 2 marks.
- 11. Find $\int_{0}^{\pi} \cot \theta \csc^{2} \theta \ d\theta$
- 12. State Max Min inequality.
- 13. Show that the value of $\int_0^1 \sin^2 x \, dx$ cannot possibly be 2
- 14. Find the area of the region bounded by the lines y = x and y = 2.
- 15. Find the length of the curve : $x = \cos t$, $y = t + \sin t$; $0 : t \le \pi$.
- 16. Find the volume of the solid generated by revolving the region between the X-axis and the curve $y = \sqrt{x}$; $0 \le x \le 4$ about X-axis.

1

- 17. Find the area of the region between the X axis and the graph of $f(x) = x^3 x^2 2x$, $-1 \le x \le 2$.
- 18. Find $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz \, dy \, dx$.
- 19. State the first form of Fubini's theorem.
- 20. Find the average value of $f(x, y) = x \cos xy$ over the rectangle; $R: 0 \quad x \le \pi, 0 \quad y \le \pi$

21. Test for consistency:

$$4x + 3y + 7z = 14$$

$$8x + 5y - 2z = 13$$

22. Find the characteristic polynomial of $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & 5 \\ 0 & 0 & 4 \end{bmatrix}$.

 $(8 \times 2 = 16 \text{ marks})$

PART C

III. Answer any six questions. Each question carries 4 marks.

- 23. Give an example of a non integrable function on [0, 1].
- 24. Evaluate $\int_0^1 \int_0^{\pi} \int_0^1 y \sin z \, dx \, dy \, dz$.
- 25. Evaluate $\frac{1}{1-x^2}dx$.
- 26. Find the length of the circle of radius r defined by $x = r \cos t$ and $y = r \sin t$;
- $0 \quad t \leq 2\pi.$
- 27. Change $\int_0^1 \int_0^{\sqrt{1-x^2}} dy \, dx$ into polar integral and evaluate it.
- 28. Find the area enclosed by the cardioid $r = a(1 + \cos \theta)$.
- 29. Reduce $\begin{bmatrix} 1 & 0 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 4 & 1 & 4 & 7 \end{bmatrix}$ to the normal form.
- 30. Show that the eigen values of the diagonal matrix are its diagonal elements.
- 31. Find the eigen vectors of $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$.

 $(6 \times 4 = 24)$

PART D

IV. Answer any two questions. Each one carries 15 marks.

- 32. i) Find the area between the graph of $y = x^3 4x$ and X-axis over [-2,2]
 - ii) Sketch the region bounded by the coordinate axes and the line x + y = 2. Also find the area of the region.
- 33. i) A pyramid 3m high has a square base that is 3m on a side. The cross-section of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on a side. Find the volume of the pyramid.
 - ii) Find the volume of the region bounded by y = 2x, y = 0, x = 1 about the line x = 1.
- 34. Evaluate $\int_{0}^{\sqrt{2}} \int_{0}^{3y} \int_{x^2+3y^2}^{8-x^2-y^2} dz \, dy \, dx$
- 35. Solve using Cramer's rule:

$$2x + y + 5z + w = 5$$

$$x + y - 3z - 4w = -1$$

$$3x + 6y - 2z + w = 8$$

$$2x + 2y + 2z - 3w = 2$$

 $(2 \times 15 = 30)$