\qquad

Name.
B. Sc. DEGREEE (C.B.C.S.S) EXAMINATION, APRIL 2018
(2014 Admission Supplementary)
SEMESTER IV- CORE COURSE (MATHEMATICS)
MAT4VTN - VECTOR CALCULUS, THEORY OF EQUATIONS AND
NUMERICAL METHODS
(For B. Sc. Mathematics and Computer Applications)
Time: Three Hours
Maximum Marks: 80

PART A

I Answer all questions. Each question carries 1 mark.

1. Write the general form of equation of a quadric surface
2. Find the gradient of $f(x, y)=y-x^{2}$ at $(-1,0)$
3. Find the unit tangent vector of $\bar{r}(t)=\cos t \bar{i}+\sin t \bar{j}$
4. Find the divergence of $\bar{F}=\left(x^{2}+1\right) \bar{i}-z \bar{j}+x \bar{k}$
5. Is the field $\bar{F}=-y \bar{i}+x \bar{j}$ is conservative?
6. Find two values a and b such that a real root $f(x)=x^{3}-x-1=0$ lies between a and b.
7. Write the condition for the sequence of approximations to a real root of an equation $f(x)=0$ converges to the required root in the method of iteration.
8. Form an equation whose roots are three times the roots of the equation $x^{3}-x^{2}+x+1=0$.
9. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$, find the value of $\frac{1}{\alpha \beta}+\frac{1}{\alpha \gamma}+\frac{1}{\beta \gamma}$.
10. State Stokes theorem

PART B

II Answer any eight questions. Each question carries 2 marks

11. Find parametric equations for the tangent line of the curve of intersection of the surfaces $f(x, y, z)=x^{2}+y^{2}-2=0$ and $g(x, y, z)=x+z-4=0$ at the point $(1,1,3)$
12. Find the derivative of $f(x, y)=x^{2}+x y$ at $(1,2)$ in the direction of the unit vector $\bar{u}=\frac{1}{\sqrt{2}} \bar{i}+\frac{1}{\sqrt{2}} \bar{j}$
13. Find the linearization $L(x, y, z)$ of $f(x, y, z)=x^{2}-x y+3 \sin z$ at the point $(2,1,0)$. Find an upper bound for the error incurred in replacing f by L on the rectangle $R:|x-2| \leq 0.01,|y-1| \leq 0.02,|z| \leq 0.01$
14. Find the curl of $\bar{F}=\left(x^{2}-y\right) \bar{i}+4 z \bar{j}+x^{2} \bar{k}$
15. Find the circulation of the field $\bar{F}=(x-y) \bar{i}+x \bar{j}$ around the circle $\bar{r}(t)=\cos t \bar{i}+\sin t \bar{j}$, $0 \leq t \leq 2 \pi$
16. Find a parametrization of the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$
17. Find the flux of $\bar{F}=x y \bar{i}+y z \bar{j}+x z \bar{k}$ outward through the surface of the cube cut from the first octant by the planes $x=1, y=1$ and $z=1$
18. Explain the geometrical interpretation of Newton-Raphson method.
19. Obtain a root correct to two decimal places using bisection method for $x^{3}-2 x-5=0$
20. Find the condition that the roots of the equation $x^{3}-1 x^{2}+m x-n=0$ may be in arithmetic progression.
21. Find the equation whose roots are 2 less than the roots of the equation $x^{4}-5 x^{3}+7 x^{2}-4 x+5=0$.
22. Find the sum of fourth powers of roots of the equation $x^{3}-x-1=0$.
$(8 \times 2=16)$

PART C

III Answer any six questions. Each question carries 4 marks.

23. Find the distance from the point $(1,1,3)$ to the plane $3 x+2 y+6 z=6$
24. Find the torsion of $\bar{r}(t)=3 \sin t \bar{i}+3 \cos t \bar{j}+4 t \bar{k}$.
25. Find a potential function for $\bar{F}=(y+z) \bar{i}+(x+z) \bar{j}+(x+y) \bar{k}$
26. Calculate the flux of the field $\bar{F}=y \bar{i}+x \bar{j}$ across the circle $x^{2}+y^{2}=1$ in the $x y$ plane
27. Setup a Newton Iteration formula for computing the square root of a given positive number. Use the same to find the square root of 2 correct to six decimal places.
28. Using Aitken's Δ^{2} process find the root of the equation $2 \mathrm{x}=\cos \mathrm{x}+3$ correct to three decimal places.
29. Solve the equation $x^{4}+2 x^{3}-25 x^{2}-26 x+120=0$ given that the product of two of its roots is 8.
30. If α, β, γ are the roots of the equation $x^{3}+p x+q=0$. Form an equation whose roots are $\alpha^{2}+\beta \gamma, \beta^{2}+\alpha \gamma, \gamma^{2}+\alpha \beta$.
31. Solve by Cardan's method $\mathrm{x}^{3}-9 \mathrm{x}+28=0$.

PART D

IV Answer any two questions. Each question carries 15 marks.

32. Integrate $G(x, y, z)=x^{2}$ over the cone $z=\sqrt{x^{2}+y^{2}}, 0 \leq z \leq 1$
33. Find the circulation of the field $\bar{F}=\left(x^{2}-y\right) \bar{i}+4 z \bar{j}+x^{2} \bar{k}$ around the curve C in which the plane $z=2$ meets the cone $z=\sqrt{x^{2}+y^{2}}$
34. Solve $x^{5}-3 x^{4}-14 x^{3}-14 x^{2}-3 x+1=0$
35. Find a real root of the equation $f(x)=x^{3}-2 x-5=0$ using method of false position.
