ГВ144460С	Reg. No:
	Name:

B. Sc. DEGREEE (C.B.C.S.S) EXAMINATION, APRIL 2018 (2014 Admission Supplementary) SEMESTER IV - COMPLEMENTARY COURSE (PHYSICS) PHY4PLS – PHYSICAL OPTICS, LASER PHYSICS AND SUPERCONDUCTIVITY (For Chemistry)

Time: Three Hours Maximum Marks: 60

PART A

I Answer all questions. Each question carries 1 mark.

- 1. Define resolving power of a grating.
- 2. How would you obtain Newton's rings with bright center?
- 3. What is meant by interference of light?
- 4. Can sound waves be polarized? Why?
- 5. What is a quarter wave plate?
- 6. Distinguish between stimulated emission end spontaneous emission.
- 7. Discuss the characteristics of laser beam.
- 8. List some applications of super conductivity.

(8x1=8)

PART B

II Answer any six questions. Each question carries 2 marks

- 9. State and explain superposition principle.
- 10. Intensities of spectral lines with a grating are much less than those with a prism. Why?
- 11. Explain what you mean by diffraction of light.
- 12. What are coherent sources? How can you obtain them?
- 13. Explain phase change on reflection.
- 14. When white light is used to produce interference fringes, fringe width for red is greater than that for blue. Why?
- 15. Distinguish between uniaxial and biaxial crystals with examples.
- 16. Explain polarization by scattering.
- 17. What is Brewster's angle? What is its significance?
- 18. Explain Meissner effect.

(6x2=12)

1 P.T.O.

PART C

IV Answer any four questions. Each question carries 4 marks

- 19. The limits of the visible spectrum are approximately $4000A^0$ and $7000A^0$. Find the angular width of the first order spectrum by a grating having 5×10^5 lines per meter.
- 20. Two coherent sources are 0.18mm apart and the fringes are observed on a screen 80cm away. It is found that with a certain monochromatic source of light, the fourth bright fringe is situated at a distance of 10.8mm from the central fringe. Calculate the wavelength of light.
- 21. A monochromatic light of wavelength 6.56×10^{-5} cm is incident on a plane transmission grating of width 2cm. If the first order is formed at $18^{\circ}14^{l}$, find the total number of lines in the grating.
- 22. Determine the polarizing angle on the surface of water. Given the refractive index of water air interface is 1.35.
- 23. Find the thickness of a quarter wave plate of quartz for sodium light of wavelength 589.3nm. Given for quartz, n_0 =1.5442 and n_E =1.5533.
- 24. Show that the probability of stimulated emission is same as that of stimulated emission.

(4x4=16)

PART D

IV Answer any two questions. Each question carries 12 marks

- 25. Derive an expression for the conditions of brightness and darkness produced under oblique incidence of light on a plane film producing interference due to reflected light.
- 26. Explain with theory the production and detection of elliptically polarized light.
- 27. With a neat diagram, explain the principle and working of Helium Neon laser.
- 28. Explain BCS theory of super conductivity.

(2x12=24)