TB156565E	Reg. No :
	Name :

B. SC. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2018

(2015 Admission Regular)

SEMESTER VI - CORE (PHYSICS)

PH6B13ATB - NANO SCIENCE AND NANO TECHNOLOGY

Time: 3 Hours Maximum Marks: 80

Part A

I. Answer all questions. Each question carries 1 marks

(6x1=6)

- 1. What are micelle and reverse micelle?
- 2. What is Bragg reflection?
- 3. What are the allotropes of Carbon?
- 4. What are nanocomposites? Give its significance.
- 5. Draw ID and 2D PC structure.
- 6. What are the advantages of MEMS devices?

Part B

II. Answer any Seven questions. Each question carries 2 marks

(7x2=14)

- 7. Explain how the melting point and electrical and magnetic properties vary at the nanoscale?
- 8. Explain how nanoscience has improved our quality of life?
- 9. What is the advantage of two photon lithography over ordinary optical lithography?
- 10. Mention four techniques for the preparation of metallic nanoparticles.
- 11. What is the role of STM in studying quantum corrals?
- 12. What is the idea behind colored stained- glass windows in medieval cathedrals? Explain briefly.
- 13. Explain the super prism effect.
- 14. Draw the reflection and transmission curve of a PC.
- 15. Briefly explain any two NEMS devices.
- 16. Briefly illustrate the components of a Spin Valve Transistor.

Part C

III. Answer any Five questions. Each question carries 6 marks

(5x6=30)

- 17. Outline the role of smart structures in industry and medicine.
- 18. Compare the density of states function of bulk semiconductor and quantum wire.
- 19. Write an account of nanoimprint lithography.
- 20. Outline the features of two photon lithography.
- 21. Explain the XRD experiment and how to use it for particle size determination.
- 22. Illustrate that CNTs are low dimensional structure.
- 23. Write a short note on features and synthesis techniques for metal nanocluster composite glasses.
- 24. Write the features of Spin valve Transistors.

Part D

IV. Answer any Two questions. Each question carries 15 marks

(2x15=30)

- 25. Using the Fermi gas model, derive equations for density of states of bulk, Q-well and Q-wire. Plot the D(E) and N(E) functions of these three structures and Q-dots.
- 26. Explain how to make use of STM and FIM in synthesis and characterization of nanoparticles.
- 27. Write an account of various kinds of CNTs and discuss the properties of carbon nanotubes.
- 28. Outline the features of photonic crystals. Also explain how these features can be used to advantage.