E 124	16
-------	----

(Pages	:	3
--------	---	---

Rog	No
neg.	170

Maximum Weight: 25

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course—REAL ANALYSIS

(For B.Sc. Mathematics Model I and Model II and B.Sc. Computer Applications)

[Prior to 2013 Admissions]

Time : Three Hours

Part A

Answer all the questions.

Each bunch of four questions carries a weight of 1.

- 1 State Cauchy's root test. I.
 - 2 What is the necessary condition for convergence of a positive term series?
 - 3 Is the series $1-1+1-1\ldots$ converges.
 - State limit form of comparison test for positive term series.
- Define a geometric series. II.
 - Test the convergence of the series $\sum \frac{1}{n^1 + 1}$.
 - Define discontinuity of first kind for a function f at a point c.
 - Define uniform continuity.
- Is the function $f(x) = \frac{1}{x}$ continuous on the set $A = \{x \in \mathbb{R} : x > 0\}$. III.
 - Give an example of a function which is discontinuous at every point of R.
 - Define $\int_{a}^{-b} f dx$, where f is a bounded real function on [a, b].
 - 12 State Darboux's theorem.
- State Fundamental theorem of Calculus. 14 State Cauchy's criterion for uniform convergence. IV.
 - State Dirichlet's test for uniform convergence.
 - What condition on r enables $\Sigma r^n \cos n\theta$ to converge uniformly for all real values of θ .
 - $(4\times 1=4)$

Part B

Answer any five questions. Each question carries a weight of 1.

17 Show that the series
$$\sum_{n=2}^{\infty} \left(\frac{1}{(\log n)^{P}} \right)$$
 diverges for $P > 0$.

18 Examine the convergence of the series
$$\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \dots$$

19 Test the convergence of the series whose *n*th term is
$$\frac{n^{n^2}}{(n+1)n^2}$$
.

20 Examine the function

$$f(x) = \begin{cases} x \sin \frac{1}{x} & \text{when } x \neq 0 \\ 0 & \text{when } x = 0 \end{cases}$$

for continuity at the origin.

21 Discuss the continuity of
$$f(x) = x - [x], x \ge 0$$
 at $x = 3$.

22 Show that the function
$$f(x) = \begin{cases} 0, x \text{ rational} \\ 1, x \text{ irrational} \end{cases}$$
 is not integrable on any interval.

23 Prove that if
$$f$$
 is monotonic on $[a, b]$, then it is integrable on $[a, b]$.

24 Test for uniform convergence, the series
$$\frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8} + \cdots, -\frac{1}{2} \le x = \frac{1}{2}.$$

$$(5\times 1=5)$$

Answer any four questions. Each question carries a weight of 2,

Part C

Test for convergence the series

$$\Sigma \frac{1^2 \cdot 3^2 \cdot \dots \cdot (2n-1)^2}{2^2 \cdot 4^2 \cdot \dots \cdot (2n)^2} x^{n-1}.$$

Show that every absolutely convergent series is convergent.

28 If f_1 and f_2 are two bounded and integrable functions on [a, b], show that $f_1 + f_2$ is also integrable on [a, b] and $\int_a^b f_1 dx + \int_a^b f_2 dx = \int_a^b f dx$.

29 If f is bounded and integrable on [a, b], prove that |f| is also bounded and integrable and

$$\left|\int_{a}^{b} f dx\right| \leq \int_{a}^{b} f |dx.$$

30 Show that the sequence $\{fu\}$, where $fu(x) = x^n$ is uniformly convergent on [0, k], k < 1 and only pointwise convergent on [0, 1].

$$(4 \times 2 = 8)$$

Part D

Answer any **two** questions.

Each question carries a weight of 4.

- 31 State and prove Leibnitz test.
- 32 Show that a function which is continuous on a closed bounded interval is uniformly continuous on that interval.
- 33 Prove that if f is bounded and integrable on [a, b], then it is integrable on [a, c] and [c, b],

where c is a point in [a, b]. Also prove that
$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx.$$

 $(2 \times 4 = 8)$