\mathbf{E}	1	5	4	7
	_	e.v	_	a

(Pages: 3)

Reg. No	***************************************	; .
		••••
Name		

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course—REAL ANALYSIS

(For B.Sc. Mathematics Model I and Model II and B.Sc. Computer Applications)
[2013 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A

Answer all questions.

Each question carries 1 mark.

- 1. State Cauchy's General Principle of Convergence for series.
- 2. Is the series $2 + \frac{3}{2} + \frac{4}{3} + \dots$ convergent? Why?
- 3. Define absolutely convergent series.
- 4. Define discontinuity of the first kind.
- 5. Define partition of [a, b] and refinement of a partion.
- 6. Define intermediate value property of a function f on [a, b].
- 7. Let f(x) = 1 for all x in [0, 1]. Is f integrable on [0, 1]? Why or why not?
- 8. State the fundamental theorem of calculus.
- 9. Show that the series $\sum \frac{\cos n\theta}{2^n}$ converges uniformly for all real values of θ .
- 10. State Abel's test.

 $(10\times 1=10)$

Part B

Answer any **eight** questions. 2 marks each.

- 11. Prove or disprove: If $u_n \to 0$ then $\sum u_n$ is convergent.
- 12. Test the convergence of the series:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{3}{2 \cdot 3 \cdot 4} + \frac{5}{3 \cdot 4 \cdot 5} + \dots$$

Turn over

- 13. State D'Alembert's ratio test.
- Prove that every absolutely convergent series is convergent.
- 15. Define removable discontinuity. Illustrate it with an example.
- 16. If a function f is continuous on [a, b] and $f(x) \in [a, b]$ for every x in [a, b], prove that there exists
- 17. Prove that $\sin x$ is uniformly continuous on $[0, \infty]$.
- 18. Explain upper integral and lower integral of a bounded function f on [a, b].
- Let f be a bounded function on [a, b]. For any partitions P_1 , P_2 , prove that $L(P_1, f) \le U(P_2, f)$.
- Prove or disprove: If |f| is integrable on [a, b], then f is integrable on [a, b].
- Explain pointwise convergence of a sequence of functions.
- Show that the sequence $\{f_n\}$ where $f_n(x) = \frac{x}{x+n}$ is uniformly convergent on [0, k] for any k > 0.

$$(8\times2=16)$$

Part C

Answer any six questions.

- 23. Discuss the convergence of the positive term geometric series $1 + r + r^2 + r^3 + ...$
- State Leibnitz test. Use it to show that the series $\frac{1}{1^p} \frac{1}{2^p} + \frac{1}{3^p} \frac{1}{4^p} + \dots$ converges for p > 0.
- Prove that a continuous function on a closed interval I is bounded on I. 27. State and prove Intermediate value theorem.
- 28. If f is integrable on [a, b], prove that f^2 is integrable on [a, b].
- 29. Compute $\int_{-1}^{1} f \, dx \text{ where } f(x) = |x|.$
- State and prove Cauchy criterion for uniform convergence of a sequence of functions.
- Prove that the sequence $\{f_n\}$ where $f_n(x) = \frac{x}{1 + nx^2}$, x real converges uniformly on any closed

$$(6\times 4=24)$$

Part D

Answer any **two** questions. 15 marks each.

- 32. (a) State and prove Gauss's test.
 - (b) Test for convergence the series $\sum \frac{1^2 3^2 \dots (2n-1)^2}{2^2 4^2 \dots (2n)^2} x^{n-1}, x > 0.$
- 33. (a) Prove that a function f defined on an interval I is continuous at a point c in I if and only if for every sequence $\{c_n\}$ in I converging to c we have $\lim_{n\to\infty} f(c_n) = f(c)$.
 - (b) Give an example of a function on R which is discontinuous at every point. Justify your example.
- 34. (a) Prove that a bounded function f is integrable on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P of [a, b] such that $U(P, f) L(P, f) < \varepsilon$.
 - (b) If f is a non-negative continuous function on [a, b] and $\int_a^b f dx = 0$, prove that f(x) = 0 for all x in [a, b].
- 35. (a) Show that the sequence $\{f_n\}$ where $f_n(x) = \tan^{-1} nx$ is uniformly convergent in any interval [a, b], a > 0 but is only pointwise convergent in [0, b].
 - (b) State and prove Weierstrass M-test.
 - (c) Test for uniform convergence the series $\sum \frac{\sin n \theta}{n^2}$ for real values of θ .

 $(2\times15=30)$