(Pages: 3)

Reg.	No			*********
Name	e	•••••	•••••	

B.Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2016

Sixth Semester

Core Course—DISCRETE MATHEMATICS

(For B.Sc. Mathematics Model I and II)

[2013 Admissions]

Time: Three Hours

Maximum Marks: 80

Part A (Short Answer Questions)

Answer all questions.

Each question carries 1 mark.

- 1. Define Spanning subgraph.
- 2. Define a cycle.
- 3. Draw all trees with four vertices.
- 4. Find the vertex connectivity of the complete graph K.
- 5. Define a maximal non-Hamiltonian graph.
- 6. State Hall's marriage theorem.
- 7. Encrypt the message CAESAR using the Caesar cipher.
- 8. State Knapsack problem.
- 9. State absorption laws of a lattice.
- 10. When is an element of a lattice said to be join irreducible?

 $(10 \times 1 = 10)$

Part B (Brief Answer Questions)

Answer any eight questions. Each question carries 2 marks.

- 11. Define vertex deleted subgraph of a graph. Illustrate with an example.
- 12. Define component of a graph. Draw a graph with an example.
- 13. Prove that G is a self-complementary graph with n vertices then n is either 4t or 4t + 1 for some integer t.
- 14. Define spanning tree of a graph. Draw two non-isomorphic spanning trees of K₄.

- 15. Define cut vertex. If P_n is the path of length n, where $n \ge 3$, find the cut vertices of P_n .
- 16. Give an example of (i) a graph which is Eulerian but not Hamiltonian; (ii) a graph which is not Eulerian but Hamiltonian.
- 17. Define a matching. When is it said to be a perfect matching?
- 18. Write a brief note on personnel assignment problem.
- 19. Distinguish between monoalphabetic cipher and polyalphabetic cipher.
- 20. Encipher the message HAPPY DAYS using the auto key cipher with seed K.
- 21. Show that the set L of all factors of 12 under the autokey forms a lattice.
- 22. Show that sublattice of a modular lattice is modular.

 $(8 \times 2 = 16)$

Part C (Short Essay Type Questions)

Answer any six questions. Each question carries 4 marks.

- 23. Define adjaceny matrix and incidence matrix of a graph. Illustrate with an example.
- 24. Define any two vertices u and v of a graph G. Prove that every u = v walk contains a u v path.
- 25. Let G be a graph with n vertices, where $n \ge 2$. Prove that G has at least two vertices that are not cut vertices.
- 26. Explain Konigsberg bridge problem and draw a graph representing the problem.
- 27. Prove that a simple graph G is Hamiltonian if and only if closure of G is Hamiltonian.
- 28. Decrypt the message RXQTGU which was enciphered by the linear cipher $C \equiv 3P + 7 \pmod{26}$.
- 29. Encipher the message ATTACK AT ONCE using Vigenere cipher with the key word READY.
- 30. Define a distributive lattice and prove that every distributive lattice is modular.
- 31. Prove that the dual of a lattice is a lattice.

 $(6\times 4=24)$

Part D (Essay Questions)

Answer any **two** questions.

Each question carries 15 marks.

- 32. (a) Let G be a non-empty graph with at least two vertices. If G has no odd cycles, prove that G is bipartite.
 - (b) Prove that a graph G is connected if and only if it has a spanning tree.

- 33. (a) Prove that a connected graph is Euler if and only the degree of every vertex is even.
 - (b) Let G be a k-regular bipartite graph with k > 0. Prove that G has a perfect matching.
- 34. (a) Explain how encryption and decryption are carries out in RSA crypto system.
 - (b) A user of the Knapsack crypto system has the sequence 49, 32, 30, 43 as listed encryption key. If the user's private key involves the modulus m = 50 and multiplier a = 33, determine the secret super increasing sequence.
- 35. (a) In a lattice L, prove that:

$$a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$$
 for all a, b, c in L .

- (b) Define a distributive lattice. Prove that the dual of a distribution lattice is distributive.
- (c) Show that a chain is a distributive lattice.

 $(2 \times 15 = 30 \text{ marks})$