	Reg. No
	Name

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2018 (2015 Admission Regular) SEMESTER VI – CORE COURSE (MATHEMATICS) MT6B09B -REAL ANALYSIS II

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. State Cauchy's General Principle of Convergence.
- 2. Define Absolute Convergence.
- 3. Define continuity at an internal point 'c' of a function f.
- 4. For any two partitions P_1 , P_2 , Show that $L(P_1,f) \le U(P_2,f)$.
- 5. Define uniform convergence of a sequence of functions.
- 6. Show that $\sum \frac{\cos nx}{n^2}$ is uniformly convergent for all values of x, where p > 1.

(6X1=6)

PART B

II. Answer any seven questions. Each question carries 2 marks.

- 7. State and Prove Geometric Series Test.
- 8. Show that the series $\sum (\log n)^{-p}$ diverges for p>0.
- 9. Prove that a series $\sum u_n$ of positive terms converges if $\lim_{n\to\infty} (u_n)^{\frac{1}{n}}$ exists and is less than 1.
- 10. If a function f is continuous on a closed interval [a,b] then prove that it attains its bounds at least ones in [a,b].
- 11. Show that the function $f(x)=x^2$ is uniformly continuous on [-1,1]
- 12. Show that the function $f(x) = \frac{1}{1 + |x|}$ for real x is continuous and bounded and attains its

supreme for x=0 but does not attain the infimum.

13. Show that the function f defined by

$$f(x) = \begin{cases} 0, 'x'is'rational' \\ 1, 'x'is'irrational \end{cases}$$

is not integrable on any interval.

14. Show that if f is bounded and integrable on [a,b] and k is a number such that

1

$$|f(x)| \le k \ \forall x \in [a,b]$$
then $\left| \int_a^b f(x) dx \right| \le k |b-a|$.

15. State and prove Weierstrass M test.

16. Show that $\{f_n\}$ where $f_n(x) = \frac{1}{x+n}$ is uniformly convergent in [0,b], b>0.

(7X2=14)

PART C

III. Answer any five questions. Each question carries 6 marks.

- 17. State and Prove D'Alembert's Ratio Test.
- 18. Test the convergence of the series:

$$\frac{\Gamma}{S} + \frac{1+\Gamma}{1+S} + \frac{(1+\kappa)(2+\kappa)}{(1+\beta)(2+\beta)} + \frac{(1+\kappa)(2+\kappa)(3+\kappa)}{(1+\beta)(2+\beta)(3+\beta)} + \dots$$

19. Show that the function f defined by

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is } rational \\ 0, & \text{if } x \text{ is } irrational \end{cases}$$
 is discontinuous at every point.

- 20. State that if a function f is continuous on a [a,b], then it attains bounds at least once in [a,b].
- 21. State and Prove a characterization for the integrability of a bounded function.
- 22. Without doing direct integration show that $\int_{1}^{2} f dx = \frac{11}{2}$ where f(x) = 3x + 1.
- 23. Consider the series $\sum_{n=0}^{\infty} f_n$ where $f_n(x)$ is defined as $\frac{x^2}{(1+x^2)^n}$, $x \in \mathbb{R}$. Find its sum function.
- 24. Show that $\{f_n(x)\}$ where $f_n(x) = x^n$ is uniformly convergent on [0,k], k < 1.

(5X6=30)

PART D

IV. Answer any two questions. Each question carries 15 marks.

- 25. State and Prove Gauss Test.
- 26. Show that if the function f is continuous on a (a,b) and f(a) and f(b) are the opposite signs, then there exists at least one point $\Gamma \in (a,b)$ such that $f(\Gamma) = 0$.
- 27. If a function f is bounded and integrable on [a,b]. Prove that the function F defined as

$$F(x) = \int_{a}^{x} f(t)dt, a \le x \le b$$
 is continuous on $[a,b]$ and furthermore if f is continuous at a point c of $[a,b]$, then F is derivable at c and $F'(c) = f(c)$.

28. State and Prove Cauchy's criterion for uniform convergence for a sequence of functions $\{f_n\}$.

 $(2 \times 15 = 30)$