ГВ156510А	Reg. No
	Name

B. Sc. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2018 (2015 Admission Regular) SEMESTER VI – CORE COURSE (MATHEMATICS) MT6B12B – LINEAR ALGEBRA

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. Determine whether the set of all diagonal 2×2 matrices under regular scalar multiplication but vector addition defined to be $A \oplus B = AB$, where $A, B \in M_{2\times 2}$, is a vector space.
- 2. Determine whether the set $S = \{ [r \ 2r \ 4r] | r \in R \}$ is a subspace of R^3 .
- 3. Is T defined by $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T[a \ b] = [a+2 \ b-2]$, a linear transformation.
- 4. Find T(u+3v) for a linear transformation if T(u) = 22 and T(v) = -8.
- 5. The determinant of a 2×2 matrix A is -40 and trace is 6. Find the eigen values of A.
- 6. Find the angle between $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 4 \end{bmatrix}$.

(6x1=6)

PART B

II. Answer any seven questions. Each question carries 2 marks.

- 7. Determine the coordinate representation of $V = \begin{bmatrix} 7 & 2 \end{bmatrix}$ with respect to the basis $S = \{\begin{bmatrix} 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \end{bmatrix}\}$.
- 8. Define row space and row rank of a matrix.
- 9. Use row rank to determine whether $S = \{ \begin{bmatrix} 2 & -4 \end{bmatrix}, \begin{bmatrix} -3 & 6 \end{bmatrix} \}$ is linearly independent.
- 10. Find the matrix representation of $T: P^2 \to P^3$, $T(at^2 + bt + c) = at^3 + bt^2 + ct$, with respect to the standard bases of P^2 and P^3 .
- 11. Find the transition matrix from $C = \{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}^T, \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T \}$ to $D = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T, \begin{bmatrix} 1 \\ 2 \end{bmatrix}^T \}$.
- 12. Determine the image of the matrix $A = \begin{bmatrix} 1 & 1 & 5 \\ 2 & -1 & 1 \end{bmatrix}$.
- 13. Find the eigen values of $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$.
- 14. Prove that similar matrices have the same characteristic equation.
- 15. Determine whether $X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^T$ and $Y = \begin{bmatrix} 3 \\ 4 \end{bmatrix}^T$ are orthogonal.
- 16. Find ||X|| for $X = \begin{bmatrix} 1/4 & 1/2 & 1/8 \end{bmatrix}^T$. (7X2=14)

1

(P.T.O)

PART C

III. Answer any five questions. Each question carries 6 marks.

- 17. Find a basis for the row space of $A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 3 & -1 & -6 \\ 3 & -2 & -4 & -2 \end{bmatrix}$.
- 18. Determine whether $t^3 + t^2 + t$ is a linear combination of $\{t^3 + t^2, t^3 + t, t^2 + t\}$.
- 19. Find the matrix representation of the linear transformation $T: \mathbb{R}^2 \to \mathbb{P}^2$ defined by $T[a b]^T = (4a + b)t^2 + 3at + 2a b$, with respect to the standard basis B of \mathbb{R}^2 and the basis $C = \{t^2 + t, t + 1, t 1\}$.
- 20. Find the rank and nullity of given transformation and determine whether it is one-one and onto. $T: \mathbb{R}^2 \to \mathbb{R}^2$, T[a b] = [a a+b].
- 21. Determine the eigen space of $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$.
- 22. Prove that the product of all eigen values (including multiplicity) equals the determinant of the matrix.
- 23. Calculate the induced inner product of $p(t) = t^2 + 2t + 3$ and $q(t) = t^2 + 3t 5$ in P^2 .
- 24. Prove that if X, Y, Z are vectors in \mathbb{R}^n then
- a) $\langle X, X \rangle > 0$, for $X \neq 0$, b) $\langle X, Y \rangle = \langle Y, X \rangle$ c) $\langle \{\}X, Y \rangle = \{ \langle X, Y \rangle \}$ for any real . (5X6=30)

PART D

IV. Answer any two questions. Each question carries 15 marks.

- 25. Prove that if $S = \{v_1, v_2...v_n\}$ is a basis for a vector space V, then any set containing more than n vectors is linearly dependent.
- 26. a) If v_C and v_D are the n tuple representations of v with respect to the bases C and D, the prove that $v_D = P_C^D v_C$ where P_C^D is the transition matrix from C to D.
 - b)Prove that the transition matrix from C to D, where both C and D are bases for the same finite dimensional vector space, is invertible and its inverse is the transition matrix from C to D.
- 27. Prove that eigen vectors of a matrix corresponding to distinct eigen values are linearly independent.
- 28. a) State and prove parallelogram law of vectors.
 - b) State and prove Cauchy Scharz inequality.
 - c) Prove the triangle inequality of vectors.
 - d) Prove that if X and Y are orthogonal $||X + Y||^2 = ||X||^2 + ||Y||^2$. (2X15=30)

2