TB162530B	Reg. No:

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017 (2016 Admission – Regular & 2015 Admission – Supplementary/Improvement) SEMESTER II - COMPLEMENTARY COURSE (PHYSICS) PH2CM2TB - MAGNETIC PHENOMENA, THERMODYNAMICS AND SPECIAL THEORY OF RELATIVITY

(For Mathematics)

Time: Three Hours Maximum Marks: 60

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. Define the term magnetic susceptibility.
- 2. What are the basic requirements for a system to be in thermodynamic equilibrium?
- 3. What is Clausius statement of the second law of thermodynamics?
- 4. State the principle of increase of entropy.
- 5. Are two simultaneous events occurring at the same point simultaneous in all inertial frames. Why?

(5x1=5)

Name:

PART B

II. Answer any five questions. Each question carries 2 marks.

- 6. Based on a typical hysteresis curve, compare the properties of soft iron and steel.
- 7. Discuss the ordering of dipoles in antiferromagnetic and ferrimagnetic materials.
- 8. Show that in an isothermal process, the heat supplied to an ideal gas is equal to the work done by the gas.
- 9. What do you mean by isochoric and isobaric processes?
- 10. Using a suitable block diagram, discuss the working principle of a refrigerator. What is meant by the term co-efficient of performance?
- 11. Discuss the effect of pressure on the melting point of a solid and boiling point of a liquid.
- 12. What are the postulates of special relativity?
- 13. What do you mean by the term proper length and proper time?

(5x2=10)

PART C

III. Answer any five questions. Each question carries 5 marks

- 14. An iron rod of area of cross-section 0.5 cm² is subjected to a magnetizing field of 1000 Am⁻¹. If the susceptibility of iron is 599, determine the permeability of the specimen and magnetic induction.
- 15. A rod of magnetic material 0.2 m long, 10 mm diameter and of relative permeability 1000 is placed inside a long solenoid wound with 300 turns/m. If a current of 0.5 A is passed through the rod, determine the magnetic moment of the rod.
- 16. A quantity of dry air at 300 K is compressed suddenly to one third of its volume. Determine the change in temperature. Given, x = 1.4.

1

P.T.O.

- 17. Show that the adiabatic elasticity of a gas is γ times that of the isothermal elasticity.
- 18. A Carnot engine whose low temperature reservoir is at 7 degree Celsius has an efficiency of 50 %. If it is desired to increase the efficiency to 70 %, by how many degrees should the temperature of the high temperature reservoir be increased?
- 19. One mole of oxygen gas expands isothermally to four times of its volume. Determine the change in entropy. Given, the gas constant R=8.314 J/mol/K.
- 20. How fast a spaceship is moved for its length to be contracted to 90 % of its length at rest?
- 21. An electron and a positron practically at rest come together and annihilates. Estimate the energy released.

(5x5=25)

PART D

IV. Answer any two questions. Each question carries 10 marks.

- 22. Discuss the features of diamagnetic, paramagnetic and ferromagnetic materials. Explain diamagnetism, paramagnetism and ferromagnetism using the electron theory of matter.
- 23. Explain the Carnot cycle with a net PV diagram. Obtain expression for the work done in a Carnot cycle.
- 24. Define the term entropy. Derive an expression for the entropy of an ideal gas in terms of temperature, volume and specific heat. Prove that the entropy change in a reversible cyclic process is zero.
- 25. Obtain the Lorentz transformation equations. Prove that for small velocities, they reduce to the Galilean transformation equations.

(2x10=20)