TV162780A	Reg. No:

B. VOC. DEGREE (C.B.C.S.S) EXAMINATION, MARCH 2017 (2016 Admission - Regular & 2015 Admission - Supplementary / Improvement) SEMESTER II - SOFTWARE DEVELOPMENT **VSD2S04TB - APPLIED MATHEMATICS**

Time: Three Hours Maximum Marks: 80

PART A

Answer all questions. Each question carries 1 mark

- Write the degree and order of the equation $(\frac{d^2y}{dx^2})^5 + 5(\frac{d^3y}{dx^3}) = 0$ 1.
- 2. State Euler's theorem
- Write equations relating cylindrical and spherical coordinates.
- Write the order of the matrix $\begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 1 \end{bmatrix}$
- Give an example for a non homogenous linear differential equation with constant coefficient.
- 6. Find $\frac{\partial z}{\partial x}$ if $z = \cos x + \sin x$
- 7. Define a singular matrix
- 8. Write Fubinis theorem for rectangle
- Write the multiplication rule of two matrices.
- 10. State Chain rule for two variable

(10x1=10)

Name:....

PART B

II. Answer any eight questions. Each question carries 2 marks

- 11. Find the rank of $\begin{bmatrix} 0 & i & -i \\ -i & 0 & i \\ i & -i & 0 \end{bmatrix}$ 12. Evaluate $\int_{1}^{3} \int_{0}^{2} (xy + x^{2}y^{3}) dy dx$ 13. Solve y''' + 6y'' + 11y' + 6y = 014. Reduce $A = \begin{bmatrix} 3 & -10 & 5 \\ -1 & 12 & -2 \\ 1 & -5 & 2 \end{bmatrix}$ to echelon form
 15. if $x = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$ and $y = \begin{bmatrix} 1 & 2 \\ 1 & 5 \end{bmatrix}$ find x + y
- 16. $Y1 = \cos 3x$, $Y2 = \sin 2x$ find W(Y1, Y2).
- 17. Define equal and equivalent matrices with example.
- 18. Form a partial differential equation by eliminating a and b from the equation $z=ax+by+a^2+b^2$.
- 19. The sum of three numbers is 6. If we multiply the third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent this in matrix form

- 20. Find the characteristics equation of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -5 & 0 \\ 1 & 8 & 1 \end{bmatrix}$
- 21. Compute the second order partial derivative of the function $g(x,y)=e^{xy}+\sin 2y+\cos y$
- 22. Evaluate $\int_{1}^{3} \int_{2}^{4} (40 2xy) dy dx$

(8x2=16)

PART C

III. Answer any six questions. Each question carries 4 marks

- 23. Find the general solution of $\frac{d^2y}{dx^2} + y = 0$
- 24. Solve by cramer's rule:5x+3y+7z=4;3x+26y+2z=9;7x+2y+10z=5
- 25. Solve (y-z)p+(z-x)q-x-y
- 26. Find all eigen values and corresponding eigen vectors of $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$
- 27. Evaluate $\int_0^1 \int_{-x}^{x^2} y^2 x dy dx$
- 28. Solve the initial value problem y'' 3y' + 2y = 0 with y=0 and y' = 1 when x=0.
- 29. If $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ find A^2 using cayley Hamilton theorem
- 30. The plane x=1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5).
- 31. Evaluate $\int_1^2 \int_2^3 \int_0^1 8xyzdzdxdy$

(6x4=24)

PART D

IV. Answer any two questions. Each question carries 15 marks

- 32. Solve using the method of variation of parameters y'' + 9y = sec3x
- 33. Solve the system of equations: 2x-5y+7z=6; x-3y+4z=3; 3x-8y+11z=11
- 34. Show that $w = 5\cos(3x + 3ct) + e^{x+ct}$, where c is a constant satisfies the wave equation $\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}.$
- 35. Use polar coordinates to find the volume of the solid above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$.

(2x15=30)