TM153525B			Reg. No:						
				Nam	e:	•••••			
		GREE (C.S.S.) (Supplementa SEMESTE C10TM - COM	ry – 2015 Ao R III - (PHY	dmission) (SICS)					
Tir	ne: Three Hours				Maxim	um Marks: 75			
]	PART A						
I.	Answer any five ques	stions. Each qu	estion carri	es 3 marks					
1.	Write down the Crank	- Nicolson for	mula for solv	ing partial	differential	equations and			
	explain the terms								
2.	Explain the principle of	f least squares							
3.	Prove that $E = E$								
4. ~	•								
5.	Find the value of D ² in terms of the forward and backward difference operators, where D is the differential operator.								
6.	is the differential opera Discuss the features of		actor method	o.					
0. 7.	Write a note on RK me	-	ector method	5					
,.	Witte a note on Kix inc	anou.				(5x3=15)			
]	PART B						
II.	Answer any six quest	ions. Each Que	estion carries	s 5 marks					
8.	Given $\frac{dy}{dx} = x^3 + y$; $y(0)=1$, compute $y(0.02)$ by Euler's method taking h=0.01								
9.	Given $\frac{dx}{dy} = \frac{1}{2}(1+x^2)$	v^2 and $v(0)=1$	v(0.1)=1.06	v(0.2)=1	12. $v(0.3) =$:1 21 Evaluate			
) .	Given $\frac{dy}{dx} = \frac{1}{2}(1+x^2)y^2$ and y(0)=1, y(0.1)=1.06, y(0.2)=1.12, y(0.3)=1.21. Evaluate y(0.4) by Mline's Predictor-Corrector method.								
10	Using Newton's divid			the interno	olation poly	nomial for the			
10.	following data. Hence		ommuna, mna	the interpo	nation pory				
	$X \qquad 0$	- 3 (-)	1	2	4	5			
	Y 2		3	12]	147			
11.	1. The following data gives the melting point of an alloy of lead and zinc, wh								
	temperature in ⁰ C and ¹	P is the percenta	age of lead in	the alloy					
	P 40	50	60	70	80	90			
	t 184	204	226	250	276	304			
1.2	Find the melting point	<u>•</u>	•		X				
12.	Using the method of le	-		•		_			
	x 2	3 15 <i>4</i>	4 33 1	5	55 2	6 127 <i>4</i>			

13. Derive the central difference approximation to the third derivative
$$(\frac{\partial^3 u}{\partial x^2})_{i,j} = \frac{u_{i+2,j} - 2u_{i+1,j} + 2u_{i-1,j} - u_{i-2,j}}{2(\Delta x)^3}$$

14. The function u satisfies Laplace's equation at all points within the square given in the following figure and has the boundary values as indicated. Compute a solution correct to 2 decimals.

4	3	2	1		0
3					1
2		U7	U8	U9	2
1		U4	U5	U6	3
		U1	U2	U3	
0	1	2	3	_	4

15. From the following table of values, estimate y'(2) and y"(2) using appropriate central difference formula

X 0 1 2 3 Y 6.9897 7.4036 7.7815 8.128 16. Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \sqrt{\sin(x+y)} dx dy$ by numerical double integration X 8.1281 8.4510

(6x5=30)

PART C

III. Answer two questions. Each question carries 15 marks

- 17. Find the approximate value of $y = \int_0^{\pi} \sin x \, dx$ using (i) trapezoidal rule (ii) Simpson's 1/3 rule (iii) Simpson's 3/8 rule (iv) Romberg's integration by dividing the range of integration into six equal parts. Calculate the percentage error from its true value in each case.
- 18. Fit the following 4 points by cubic spline using the conditions y"₀=y"₃=0. Hence compute y(1.5) and y'(2)

Ι 0 3 1 ΧŢ 11 y_{I}

19. Explain Jacobi's method, Gauss Seidel method and SOR method by solving the Laplace's equation in the given domain for 3 successive iterations

> 0 0 0 0

- 20. (a) Solve the following system of equations by Gauss elimination method 4x+y+z=4; x+4y-2z=4; 3x+2y-4z=6
 - (b) Find the inverse of $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & -2 \\ 2 & 0 & -4 \end{bmatrix}$ by Gauss Jordan method

 $(2 \times 15 = 30)$