$\qquad$
Name $\qquad$

## B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, MARCH 2017 <br> (Supplementary/Improvement - 2014 Admission) <br> SEMESTER IV - COMPLEMENTARY COURSE (STATISTICS) STA4SI - STATISTICAL INFERENCE <br> (Complementary course for Mathematics \& Physics, Core course for CA)

Time: Three Hours
Maximum Marks: 80
Use of Scientific calculators and Statistical tables are permitted.

## PART A

I Answer all questions. Each question carries 1 mark.

1. Distinguish between point estimation and interval estimation.
2. Define sufficiency.
3. Give an example of an estimator which is biased and consistent.
4. If $t$ is an unbiased estimate of $\theta$, is $t^{2}$ an unbiased estimate of $\theta^{2}$ ? Why?
5. What is meant by confidence coefficient?
6. What is the method of moments?
7. Define the significance level.
8. What are the two types of errors in testing?
9. Define the power of a test.
10. Distinguish between null and alternative hypotheses.

## PART B

II Answer any eight questions. Each question carries 2 marks.
11. Write a necessary and sufficient condition for sufficiency.
12. Distinguish between the parameter and a statistic.
13. Show that the sample is an unbiased estimate of the population mean.
14. Obtain confidence interval for the mean of a normal population when the standard deviation is unknown.
15. What are the properties of maximum likelihood estimates?
16. Explain the method of minimum variance.
17. State Neyman Pearson lemma.
18. Distinguish between simple and composite hypotheses.
19. Develop the large sample test for testing the equality of means of two populations.
20. How do you test the significance of proportion of a population?
21. What are the assumptions made for testing the equality of means of two normal populations using $t$ distribution.
22. Write the mathematical model for one way classification.

PART C
III Answer any six questions. Each question carries 4 marks.
23. What do you mean by efficient estimates? If $X_{1}, X_{2}, X_{3}$ are 3 independent observations from a population with mean and variance $\sigma^{2}$. If $t_{1}=X_{1}-X_{2}+X_{3}$ and $\left(t_{2}=2 X_{1}-4 X_{2}\right.$ $+3 \mathrm{X}_{3}$ ) compare the efficiencies of $\mathrm{t}_{1}$ and $\mathrm{t}_{2}$.
24. Explain the method of maximum likelihood. Obtain the M.L.E. of $p$ for a Binomial population $\mathrm{B}(\mathrm{N}, \mathrm{p})$.
25. Find the Cramer Rao lower bound for the variance of an unbiased estimator of the parameter $\lambda$ of Poisson distribution.
26. (a) Explain how will you construct the confidence interval for the proportion of a Binomial population.
(b) A random sample of 500 oranges from a box, 65 were found to be bad. Find $95 \%$ confidence limits for the proportion of bad oranges.
27. Obtain the best critical region of size $\alpha$ for testing $H_{0}: \mu=\mu_{0}$ against the alternative $H_{1}$ : $\mu=\mu_{1}$ in a normal population $\mathrm{N}(\mu, 1)$.
28. Explain the chi - square test for goodness of fit.
29. The standard deviation of a sample of size 15 from a normal population was found to be 7. Examine whether the hypothesis that the S.D. is 7.6 is acceptable.
30. Explain Chi - square test for variance of a normal population.
31. Explain the procedure to carry out ANOVA.
( $6 \times 4=24$ )

## PART D

## IV Answer any two questions. Each question carries 15 marks.

32. (a) Show that for the normal population $\mathrm{N}(\mu, \sigma 2), \sigma^{2}$ is known, the sample mean $\bar{X}$ is a minimum variance estimator.
b) A random sample of size 11 from a normal population is found to have variance 12.3. Find $95 \%$ confidence interval for the population variance.
33. 100 students were classified according to their brilliance level and community. $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ denote two levels of brilliance and $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ denote three communities. Examine whether there is any relation between community and brilliance.

|  | $\mathrm{B}_{1}$ | $\mathrm{~B}_{2}$ |
| :--- | :--- | :--- |
| $\mathrm{~A}_{1}$ | 215 | 135 |
| $\mathrm{~A}_{2}$ | 325 | 175 |
| $\mathrm{~A}_{3}$ | 60 | 90 |

34. In a sample of 600 men from a certain city 400 are found to be smokers. In a sample of 900 from another city 450 are smokers. Do the data indicate that the cities are significantly different as far as smoking habits of people are concerned. ( $\alpha=0.05$ )
35. The following data gives the marks obtained by a sample of 10 students before and after a period of training. Assuming normality test whether the training was of any use.

| Before <br> training | 91 | 95 | 81 | 83 | 76 | 88 | 89 | 97 | 88 | 92 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| After <br> training | 79 | 101 | 85 | 88 | 81 | 92 | 90 | 99 | 97 | 87 |

