TB144430B

Reg. No:

Name:

Maximum Marks: 80

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION MARCH 2017 (Supplementary – 2014 Admission) SEMESTER IV - COMPLEMENTARY COURSE (MATHEMATICS) MAT4FDN - FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA (Common For Physics And Chemistry)

Time: Three Hours

PART A

I. Answer all questions. Each question carries 1 mark.

- 1. Find the fundamental period of $\cos \frac{2\pi x}{k}$.
- 2. Check whether the function $f(x) = x^3 sinx$ is odd or even.
- 3. Write Legendre's equation.
- 4. Write Rodrigue's formula,
- 5. If $F = ax^2 + by^2 + cz^2 1$ and H = x + y + z 1, find $\frac{\partial(F,H)}{\partial(y,z)}$.
- 6. Obtain the partial differential equation associated with an equation of the form $z = f(x^2 + y^2)$ where the function f is arbitrary.
- 7. Write the equation of representing set of all spheres whose centers lie on the y- axis .
- 8. What is meant by relative error.
- 9. Write Newton Raphson's formula for approximation.
- 10. Give an example of a cyclic group of order 6.

(10x1=10)

PART B

II. Answer any eight questions. Each question carries 2 marks.

- 11. Sketch the graph of |x| for $-\pi < x < \pi$.
- 12. Write Fourier series of odd 2L periodic function f(x) over the interval [-L,L]. Write formula for Fourier coefficients.
- 13. If n is a positive integer then show that (n + 1) = n!.
- 14. Write the first four Legendre polynomials.
- 15. Solve y' + y = 0 using power series method.
- 16. Obtain the partial differential equation that associated with an equation of the form $z = f(x^2 + y^2)$ where the function f is arbitrary.
- 17. Form the partial differential equation by eliminating the arbitrary function from $f(x+y+z, x^2+y^2+z^2) = 0$.
- 18. Find the integral curves of the equation $\frac{dx}{xy} = \frac{dy}{yz} = \frac{dz}{zy}$.
- 19. Form the partial differential equation by eliminating the constants a and b from z = (x+a)(y+b).

- 20. Find the real root of the equation $x^3 x 1 = 0$ using bisection method.
- 21. Define ring.
- 22. Find all the orders of subgroups of \mathbb{Z}_8 .

(8x2=16)

PART C

III. Answer any six questions. Each question carries 4 marks.

- 23. Find the Fourier series for $f(x) = x^2$ in $[-\pi, \pi]$ with $f(x) = f(x+2\pi)$.
- 24. Find the Fourier series of $f(x) = \begin{cases} 1+x & -1 < x < 0\\ 1-x & 0 < x < 1 \end{cases}$ with f(x) = f(x+2). 25. Find the integral curves of the equation $\frac{dx}{x(y-z)} = \frac{dy}{y(z-x)} = \frac{dz}{z(x-y)}$.
- 26. Find the general integral of the linear partial differential equation

$$y^2 \frac{\partial z}{\partial x} - xy \frac{\partial z}{\partial y} = (z - 2y)x.$$

- 27. Find by Newton's method, a root of the equation $x^3 6x + 4 = 0$ correct to 3 decimal places.
- 28. Prove that subgroup of a cyclic group is cyclic.
- 29. Let n be a positive integer. \mathbb{R}^n is the set of all ordered n-tuples $(x_1, x_2, x_3, \dots, x_n)$ where $x_i \in \mathbb{R}$. Show that \mathbb{R}^n is a vector space over \mathbb{R} where $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2)$ $y_2, \dots, x_n + y_n$, $\mathbf{x} = (rx_1, rx_2, \dots, rx_n)$ and $\mathbf{x} = (x_1, x_2, x_3, \dots, x_n)$, $\mathbf{y} = (y_1, y_2, y_3, \dots, y_n)$.
- 30. Show that $\mathbb{Z}_n = \{0, 1, 2, 3, \dots, n-1\}$ is a cyclic group under addition modulo n.
- 31. Write the composition table of S_3 .

(6x4=24)

PART D

IV. Answer any two questions. Each question carries 15 marks.

- 32. Obtain Fourier Cosine and sine series of $f(x) = \begin{cases} \frac{2k}{l} x & \text{when } 0 \le x \le \frac{l}{2} \\ \frac{2k}{l} (l-x) & \text{when } \frac{l}{2} \le x \le l \end{cases}$
- 33. Solve $(1 x^2)y'' = 2xy$ by using power series.
- 34. Use iteration method to obtain the root of the equation $x^3 2x 5$ correct to three decimal places.
- 35. Show that the set of all numbers of the form $a + b\sqrt{2}$, where a and b are rational numbers, with usual addition and multiplication is a field.

(2x15=30)