\qquad
Name: \qquad

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION MARCH 2017

(Supplementary - 2014 Admission)
SEMESTER IV - COMPLEMENTARY COURSE (MATHEMATICS)
MAT4FDN - FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL
ANALYSIS AND ABSTRACT ALGEBRA
(Common For Physics And Chemistry)
Time: Three Hours
Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark.

1. Find the fundamental period of $\cos \frac{2 \pi x}{k}$.
2. Check whether the function $\mathrm{f}(\mathrm{x})=x^{3} \sin x$ is odd or even.
3. Write Legendre's equation.
4. Write Rodrigue's formula.
5. If $F=a x^{2}+b y^{2}+c z^{2}-1$ and $H=x+y+z-1$, find $\frac{\partial(F, H)}{\partial(y, z)}$.
6. Obtain the partial differential equation associated with an equation of the form $z=f\left(x^{2}+y^{2}\right)$ where the function f is arbitrary.
7. Write the equation of representing set of all spheres whose centers lie on the y - axis .
8. What is meant by relative error.
9. Write Newton Raphson's formula for approximation.
10. Give an example of a cyclic group of order 6.

PART B

II. Answer any eight questions. Each question carries 2 marks.
11. Sketch the graph of $|x|$ for $-\pi<x<\pi$.
12. Write Fourier series of odd 2 L periodic function $\mathrm{f}(\mathrm{x})$ over the interval [-L,L]. Write formula for Fourier coefficients.
13. If n is a positive integer then show that $\Gamma(\mathrm{n}+1)=\mathrm{n}$!.
14. Write the first four Legendre polynomials.
15. Solve $y^{\prime}+y=0$ using power series method.
16. Obtain the partial differential equation that associated with an equation of the form $z=f\left(x^{2}+y^{2}\right)$ where the function f is arbitrary.
17. Form the partial differential equation by eliminating the arbitrary function from $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$.
18. Find the integral curves of the equation $\frac{d x}{x y}=\frac{d y}{y z}=\frac{d z}{z y}$.
19. Form the partial differential equation by eliminating the constants a and b from $z=(x+a)(y+b)$.
20. Find the real root of the equation $x^{3}-x-1=0$ using bisection method.
21. Define ring.
22. Find all the orders of subgroups of \mathbb{Z}_{8}.
($8 \times 2=16$)

PART C

III. Answer any six questions. Each question carries 4 marks.

23. Find the Fourier series for $\mathrm{f}(\mathrm{x})=x^{2}$ in $[-\pi, \pi]$ with $\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{x}+2 \pi)$.
24. Find the Fourier series of $f(x)=\left\{\begin{array}{cc}1+x & -1<x<0 \\ 1-x & 0<x<1\end{array}\right.$ with $f(x)=f(x+2)$.
25. Find the integral curves of the equation $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$.
26. Find the general integral of the linear partial differential equation

$$
y^{2} \frac{\partial z}{\partial x}-x y \frac{\partial z}{\partial y}=(z-2 y) x
$$

27. Find by Newton's method, a root of the equation $x^{3}-6 x+4=0$ correct to 3 decimal places.
28. Prove that subgroup of a cyclic group is cyclic.
29. Let n be a positive integer. \mathbb{R}^{n} is the set of all ordered n -tuples $\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$ where $x_{i} \in \mathbb{R}$. Show that \mathbb{R}^{n} is a vector space over \mathbb{R} where $\boldsymbol{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+\right.$ $\left.y_{2}, \ldots, x_{n}+y_{n}\right), \mathrm{r} \mathbf{x}=\left(r x_{1}, r x_{2}, \ldots, r x_{n}\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots y_{n}\right)$.
30. Show that $\mathbb{Z}_{n}=\{0,1,2,3, \ldots n-1\}$ is a cyclic group under addition modulo n.
31. Write the composition table of S_{3}.

PART D

IV. Answer any two questions. Each question carries 15 marks.
32. Obtain Fourier Cosine and sine series of $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{2 k}{l} \mathrm{x} & \text { when } 0 \leq \mathrm{x} \leq \frac{l}{2} \\ \frac{2 k}{l}(l-\mathrm{x}) & \text { when } \frac{l}{2} \leq \mathrm{x} \leq l\end{cases}$
33. Solve $\left(1-x^{2}\right) y^{\prime \prime}=2 x y$ by using power series.
34. Use iteration method to obtain the root of the equation $x^{3}-2 x-5$ correct to three decimal places.
35. Show that the set of all numbers of the form $\mathrm{a}+\mathrm{b} \sqrt{2}$, where a and b are rational numbers, with usual addition and multiplication is a field.

