TB145630A Reg. No:	
	Name :
B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016 SEMESTER V - MATHEMATICS	
MAT5FM - FUZZY MATHEMATICS	
Time: Three Hours Maximum Marks: 80	
PART A	
Short Answer Questions	
Ι.	Answer all questions. Each question carries 1 mark.
1.	Define support of a fuzzy set
2.	Compute the scalar cardinalities for the fuzzy set given by $D(x) = 1 - \frac{x}{10}$ for $x \in$
	$\{0,1,2,\ldots,10\} = X$
3.	State the second decomposition theorem
4. ~	Define fuzzy t- norm
5.	Write the "Sugeno class" of fuzzy complements
6.	State first characterization theorem of fuzzy complements $\sin x = 0 < x < \pi$
7.	Determine whether the fuzzy set by the following function $A(x) = \begin{cases} sinx & 0 \le x \le \pi \\ 0 & otherwise \end{cases}$ is
	a fuzzy number
8.	Calculate [-3,4]. [2,6]
9.	Define Linguistic hedges
10.	Define unqualified fuzzy proposition
	(10x1=10)
PART B	
Brief Answer Questions II. Answer any eight questions. Each question carries 2 marks.	
	Show that the law of contradiction is violated for fuzzy sets.
	For A,B ϵ F(X) and $\alpha \epsilon$ [0,1], Show that , (A U B) = A U α B.
	Let $f: X \to Y$ be an arbitarary function. Then, for any $A \in \mathcal{F}(X)$ and all $\alpha \in [0,1]$ prove
	that $^{\alpha+}[f(A)] = f(^{\alpha+}A)$
14.	Prove that the standard fuzzy intersection is the only idempotent t- norm
	The triples $< min, max, c >$ and $< i_{min}, i_{max}, c >$ are dual with respect to any fuzzy
	complement c
16.	Find the equilibrium point of $c_{\gamma}(a) = \frac{\gamma^2(1-a)}{a+\gamma^2(1-a)}$
	Does distributive law hold for arithmetic operations on closed intervals? Justify your
	answer
	$0 x \le -1 and x > 3$
18.	
	$(3-x)/2 \qquad 1 < x \le 3$
	$0 \qquad for x \le 1 \ ana \ x > 5$

 $B(x) = \{(x-1)/2 & 1 < x \le 3 & \text{then compute } A - B \\ (5-x)/2 & 3 < x \le 5$

19. Prove that X = B - A is not the solution of the fuzzy equation A + X = B

1

(P.T.O)

- 20. Define Boolean algebra on a set A
- 21. Define fuzzy quantifiers with examples
- 22. Explain existential and universal quantifications

(8x2=16)

PART C

Short Essay questions

- III. Answer any six questions. Each question carries 4 marks.
- 23. Prove that $S(A, B) = \frac{|A \cap B|}{|A|}$
- 24. Consider the fuzzy sets A and B defined on the interval X = [0,10] of real numbers by the membership grade functions $A(x) = \frac{x}{x+2}$, $B(x) = \frac{1}{1+10(x-2)^2}$. Determine the mathematical formulas and graph of the membership grade functions of \bar{A} and \bar{B}
- 25. State and prove second decomposition theorem
- 26. For all $a, b \in [0,1]$, $i_{min}(a,b) \le i(a,b) \le \min(a,b)$ where i_{min} denotes the drastic intersection
- Define fuzzy compliment. Prove that every fuzzy compliment has at most one equilibrium
- 28. If A, B, C are closed intervals, prove that $A.(B+C) \le A.B + A.C$ Also if $b.c \ge 0$ for every $b \in B, c \in C$, then prove that A.(B+C) = A.B + A.C
- 29. Consider two fuzzy numbers A and B defined by

$$A(x) = \begin{cases} x + 1)/2 & -1 < x \le 1 \\ (3 - x)/2 & 1 < x \le 3 \\ 0 & x \le 1 \text{ and } x > 5 \end{cases}$$
and $B(x) = \{(x - 1)/2 & 1 < x \le 3 \\ (5 - x)/2 & 3 < x \le 5 \end{cases}$, find $\alpha_{(A+B)}$ and $\alpha_{(A-B)}$

- 30. Explain different types of modifiers with examples
- 31. Let sets of values of variables x and y be $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$ respectively. Assume that the proposition "if x is A then y is B" is given where $A = .5/x_1 + 1/x_2 + .6/x_3$ and $B = 1/y_1 + .4/y_2$. Give a fact expressed by the proposition "x is A", where $A' = .6/x_1 + .9/x_2 + .7/x_3$, use generalized ponens to derive a conclusion in the form "y is B"

(6x4=24)

PART D

Essay type questions

- IV . Answer any two questions. Each question carries 15 marks.
- 32. Distinguish between crisp set and fuzzy sets
- 33. Let a function $c: [0,1] \rightarrow [0,1]$ satisfy axioms c2 and c4. Then prove that c satisfies c1 and c3. Also prove that c must be a bijective function
- 34. State and prove a necessary and sufficient condition for $A \in \mathfrak{I}(\mathbb{R})$ to be a fuzzy number
- 35. Explain fuzzy quantifiers with suitable examples

(2x15=30)