B.Sc.DEGREE (C.B.C.S.S) EXAMINATION, OCTOBER 2016
 SEMESTER V- MATHEMATICS
 MAT5DE - DIFFERENTIAL EQUATIONS

Time: Three hours

Maximum Marks: 80

Part A
 (Short Answer Questions)

(Answer all questions.Each question carries 1 mark)

1. Show that the homogeneous equation

$$
\left(\alpha x^{2}+\beta x y+\gamma y^{2}\right) d x+\left(\delta x^{2}+\epsilon x y+\eta y^{2}\right) d y=0
$$

is exact if and only if $\beta=2 \delta$ and $\epsilon=2 \gamma$.
2. Define a homogeneous differential equation.
3. Define integrating factor of a first order differential equation.
4. Write the general form of the n-th order linear ordinary differential equation.
5. Find the general solution of $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+25 y=0$.
6. The roots of the auxiliary equation of a certain 10th-order homogeneous linear differential equation with constant coefficients are $4,4,4,4,2+3 i, 2-3 i$, $2+3 i, 2-3 i, 2+3 i, 2-3 i$. Write the general solution.
7. Locate the singular points of the differential equation

$$
\left(x^{4}-2 x^{3}+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2(x-1) \frac{d y}{d x}+x^{2} y=0
$$

8. Write the Bessel's equation of order p.
9. Write the general form of the first order linear partial differential equation.
10. Find the partial differential equation corresponding to $z=(x+a)(y+b)$.

$$
(10 \times 1=10)
$$

Part B
 (Brief Answer Questions)
 (Answer any eight questions.Each question carries 2 marks)

11. Solve the equation $\frac{d y}{d x}+3 y=3 x^{2} e^{-3 x}$.
12. Solve the equation $(2 x y+1) d x+\left(x^{2}+4 y\right) d y=0$.
13. Solve the equation $4 x y d x+\left(x^{2}+1\right) d y=0$.
14. Solve the equation $(x+2 y+3) d x+(2 x+4 y-1) d y=0$.
15. Show that the function e^{x}, e^{-x} and $e^{2 x}$ are linearly independent on every real interval.
16. Solve the initial value problem $\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-12 y=0 ; y(0)=3, y^{\prime}(0)=5$.
17. Find the general solution of $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-3 y=2 e^{4 x}$.
18. Find the indicial equation of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-\left(x^{2}+\frac{5}{4}\right) y=0$ corresponding to the regular singular point $x=0$.
19. Locate and classify the singular points of the equation $x^{2}(x-2)^{2} \frac{d^{2} y}{d x^{2}}+2(x-2) \frac{d y}{d x}+(x+1) y=0$.
20. Show that $\frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$.
21. Find the integral curves of $\frac{d x}{x}=\frac{d y}{y}=\frac{d z}{z}$.
22. Show that the direction cosines of the tangent at the point (x, y, z) to the conic $a x^{2}+b y^{2}+c z^{2}, x+y+z=1$ are proportional to ($b y-c z, c z-a x, a x-b y$).

$$
(8 \times 2=16)
$$

Part C
 Descriptive (Short Essay Questions)
 (Answer any six questions.Each question carries 4 marks)

23. Solve the equation $\left(x^{3}+y^{2} \sqrt{x^{2}+y^{2}}\right) d x-\left(x y \sqrt{x^{2}+y^{2}}\right) d y=0$.
24. Solve the equation $\left(y^{2}(x+1)+y\right) d x+(2 x y+1) d y=0$.
25. Find the value of k such that the parabolas $y=c_{1} x^{2}+k$ are the orthogonal trajectories of the family of ellipses $x^{2}+2 y^{2}-y=c_{2}$.
26. Solve the initial value problem $\frac{d^{2} y}{d x^{2}}+8 \frac{d y}{d x}+16 y=8 e^{-2 x}$; $y(0)=2, y^{\prime}(0)=0$.
27. Given that $e^{x} \sin 2 x$ is a solution of $\frac{d^{4} y}{d x^{4}}+3 \frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+13 \frac{d y}{d x}+30 y=0$, find the general solution.
28. Find power series solutions in powers of x of the differential equation $\frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=0$.
29. Solve the system of equations

$$
\begin{aligned}
& 2 \frac{d x}{d t}-2 \frac{d y}{d t}-3 x=t \\
& 2 \frac{d x}{d t}+2 \frac{d y}{d t}+3 x+8 y=2
\end{aligned}
$$

30. Show by means of an example that the parametric equations of a surface need not be unique.
31. Find the partial differential equation corresponding to $z^{2}\left(1+a^{3}\right)=8(x+a y+b)^{3}$.

$$
(6 \times 4=24)
$$

Part D
 (Essay Type Questions)

(Answer any two questions.Each question carries 15 marks)
32. (a) Show that the transformation $v=y^{1-n}, n \neq 0$ or 1 reduces the Bernoulli equation $\frac{d y}{d x}+P(x) y=Q(x) y^{n}$ to a linear equation in the dependent variable v and the independent variable x
(b) Solve the initial value problem $\frac{d y}{d x}+\frac{y}{2 x}=\frac{x}{y^{3}} ; y(1)=2$.
33. Solve the equation $x^{3} \frac{d^{3} y}{d x^{3}}-x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}-2 y=x^{3}$.
34. Using the method of Frobenius find two linearly independent solutions near $x=0$ of the differential equation $2 x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0$.
35. (a) Eliminate the arbitrary function f from the equation $f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$ and hence find the corresponding partial differential equation.
(b) Find the general integral of the linear partial differential equation $x^{2} p+y^{2} q=(x+y) z$.

$$
(2 \times 15=30)
$$

