TB153480A	Reg. No:
	Name:

B. Sc. DEGREE (C. B. C. S. S.) EXAMINATION, OCTOBER 2016 SEMESTER III – COMPLEMENTARY COURSE (PHYSICS) PH3CC3TB – QUANTUM MECHANICS, SPECTROSCOPY, NUCLEAR PHYSICS AND ELECTRONICS

(For Chemistry)

Time: Three Hours Maximum Marks: 60

PART A

Short answer questions

I. Answer all questions. Each question carries 1 mark

- 1. What do you mean by matter waves? Write down the equation for the de Broglie wavelength of matter waves.
- 2. List out four shortcomings of Bohr atom model.
- 3. What do you mean by transuranic elements? Give two examples.
- 4. State Soddy-Fajan's displacement law in radioactivity.
- 5. Write down the diode equation. Name the diode parameters.

(5x1=5)

PART B

Brief answer questions

II. Answer any five questions. Each question carries 2 marks

- 6. Briefly point out four reasons which led to the evolution of quantum mechanics.
- 7. What is the physical significance of a wave function? What do you mean by normalization of a wave function?
- 8. Explain briefly how Sommerfeld's relativistic correction explained the fine structure of spectral lines, with the help of H_{α} fine structure diagram.
- 9. Write down the four general properties of a nucleus.
- 10. Define half life and mean life of a radioactive element. The disintegration constant of a radioactive element is 0.00231 per day. Calculate its half life and mean life.
- 11. Write a short note on radioactive dating.
- 12. Differentiate between intrinsic and extrinsic semiconductors with one example for each.
- 13. What do you mean by thermal runaway?

(5x2=10)

PART C

Descriptive Short essay questions

III. Answer any five questions. Each question carries 5 marks

P.T.O

- 14. An electron has a velocity of 6.6×10^4 m/s with an accuracy of 0.01%. Calculate the uncertainty in the position of the electron.
- 15. Show that the electrons accelerated through a potential difference of V volts will have a wave of wavelength $\frac{12.27}{\sqrt{V}}$ A^o associated with them. What voltage must be applied to an electron microscope to produce electrons of wavelength 0.5 A^o.
- 16. The first member of Balmer series of Hydrogen atom has wavelength of 6563 A°. Calculate the wavelength of the second member of Balmer series.
- 17. A nucleus with mass number A = 235, splits into two nuclei, whose mass numbers are in the ratio 2:1. Find the radii of the new nuclei.
- 18. A reactor generates energy at the rate of 32×10^6 watts. How many atoms of U^{235} undergo fission per second. Assume that on the average, anenergy of 200 MeV is released per fission.
- 19. A certain radioactive element disintegrates for an interval of time equal to its mean life. What fraction of element remains? What fraction has been disintegrated?
- 20. Define current amplification factor. In a common base connection, current amplification factor is 0.9. If the emitter current is 1 mA, determine the value of base current.
- 21. A power supply A delivers 10V dc with a ripple of $0.5 V_{rms}$ while the power supply B delivers 25V dc with a ripple of 1 mV. Which one is a better power supply? Justify your answer.

(5x5 = 25)

PART D

Long essay type questions

IV. Answer any two questions. Each question carries 10 marks

- 22. What is the significance of Schrodinger equation in Quantum Mechanics? Derive the time independent Schrodinger equation in three dimensions.
- 23. Explain the postulates of Vector atom model. Briefly explain the quantum numbers associated with vector atom model.
- 24. Differentiate between natural and artificial radioactivity with examples. Write down four properties each for alpha, beta and gamma rays.
- 25. Explain the function of a rectifier circuit. Define ripple factor. Derive expressions for the ripple factor and efficiency of a half wave rectifier.

(2x10 = 20)