ГВ153440А	Reg. No
	Name
B. Sc. DEGREE (C.B.C.S.S	S.) EXAMINATION, OCTOBER 2016
SEMESTER III – COF	RE COURSE (MATHEMATICS)
MT3B0	O3B - CALCULUS
Гime: Three Hours	Maximum Marks: 80
	PART A
Short	t Answer Questions
I. Answer all questions. Each questi	on carries 1 mark
1. Find $\frac{dy}{dx}$ if $x = \cos\theta$, $y = \cos n\theta$.	
2. Write down the Maclaurin's series e	expansion of $f(x)$
2 F: 10f -1/4 5 :0.0/	4

3. Find $\frac{\partial f}{\partial x}$ at(4,-5), if f(x,y)=x²+3xy+y-1 4. Find $\int_{2\pi}^{3\pi} 3\cos^2 x \sin x \, dx$

5. Evaluate $\int_{-1}^{1} \int_{0}^{2} (1 - 6x^{2}y) dx dy$ 6. Evaluate $\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{2} dx dy dz$

(6x1=6)

PART B

Brief Answer Questions

II. Answer any seven questions. Each question carries 2 marks.

- 7. What is a point of inflexion? Show that the curve $y=x+e^x$ has no point of inflexion.
- 8. Find the n^{th} derivative of $y=\cos^3 x$.
- 9. Define Saddle Point. Show that $f(x,y)=y^2-x^2$ has a saddle point at (0,0)
- 10. Use the chain rule to find the derivative of $w=x^2y-y^2$ with respect to t along the path $x = sint and y = e^{t}$. What is the derivative's value at t=0?
- 11. Find the local extreme values of the function: $f(x,y)=xy-x^2-y^2-2x-2y+4$
- 12. Describe the method of Lagrange Multipliers for finding the local maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z)=0.
- 13. Find the circumference of a circle of radius r defined parametrically as x=r cost,y=r sint $0 \le t \le 2\pi$
- 14. Find the area of the region between $y=3x^2$ and the x-axis on the interval [0,b].
- 15. Evaluate: $\int_0^1 \int_0^1 \int_0^1 (x^2 + y^2 + z^2) dz dy dx$
- 16. Write the Jacobian determinant of x=g(u,v), y=h(u,v)

(7x2=14)

PART C

Descriptive Short Essay Questions

III. Answer any five questions. Each question carries 6 marks.

17. Find
$$y_n$$
, if $y = \frac{x^2}{(x+2)(2x+3)}$

- 18. Find the ranges of values of x for which the curve $y=x^4-6x^3+12x^2+5x+7$ is concave upwards or downwards. Also determine the points of inflexion.
- 19. Using chain rule express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $w=x+2y+z^2$, $x=\frac{r}{s}$, $y=r^2+\log s$ and z=2r.
- 20. Find $\frac{\partial w}{\partial x}$ at the point (x,y,z)=(2,-1,1) if $w=x^2+y^2+z^2$ and $z^3-xy+yz+y^3=1$
- 21. Find the volume of the solid generated by revolving the region bounded by $y=\sqrt{x}$ and the lines y=1, x=4 about the line y=1
- 22. Find the length of the asteroid $x=\cos^3 t$, $y=\sin^3 t$, $0 \le t \le 2\pi$
- 23. Sketch the region of integration for the integral $\int_0^b \int_0^{a} \sqrt{b^2 y^2} xy \, dx \, dy$ and write an equivalent integral with the order of integration reversed.
- 24. Find the area enclosed by the cardioid, $r = a(1+\cos\theta)$.

(5x6=30)

PART D

Long Essay type Questions

IV. Answer any two questions. Each question carries 15 marks.

- 25. (i) State and prove Leibnitz Theorem for finding the nth derivative of the product of two functions.
 - (ii) If $y = \cos(m \sin^{-1}x)$, show that $(1-x)^2y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$
- 26. The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Find the points on the ellipse that lie closest to and farthest from the origin.
- 27. Find the length of the curve $y = \left(\frac{x}{2}\right)^{\frac{2}{3}}$ from x=0 to x=2.
- 28. Evaluate: $\int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \frac{2x-y}{2} dx dy$ by applying the transformation $u = \frac{2x-y}{2}$, $v = \frac{y}{2}$ and integrating over an appropriate region in the uv-plane.

(2x15=30)