| TB153150D | Reg. No: |
|-----------|----------|
|           |          |

Name: .....

# B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016 SEMESTER III - CORE COURSE (COMPUTER APPLICATION) CAM3B03TB - CALCULUS

Time: Three Hours Maximum Marks: 80

## PART A

## I. Answer all questions. Each question carries 1 mark

- 1. State Lebinitz's theorem.
- 2. Define saddle points
- 3. Write the shell formula for finding the volume of the solid generated by the revolution of a region about y-axis.
- 4. State Papus theorem for surface area.
- 5. Write the formula for surface area in differential form.
- 6. State Fubini's theorem first form.

 $(6 \times 1 = 6)$ 

### PART B

# II. Answer any seven of the following. Each question carries 2 marks

- 7. Differentiate the equation n times  $(1-x^2)y_2 xy_1 y = 0$ .
- 8. Expand  $y = e^x$  using Taylor's theorem around x = 1
- 9. Find the point of inflexion on the curves  $x = a \tan t$ ,  $y = a \sin t \cos t$

10. If 
$$u = xy/(x+y)$$
. Show that  $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$ 

- 11. Verify that  $\frac{\partial^2 u}{\partial x \partial y} \neq \frac{\partial^2 u}{\partial y \partial x}$  if  $u = \log \frac{x^2 + y^2}{xy}$
- 12. Examine  $xy + \frac{1}{x} + \frac{1}{y}$  for maxima and minima.
- 13. Evaluate  $\int_0^1 \int_0^2 xy(x-y) dy dx.$
- 14. Find the perimeter of the cardioids  $r = a (1 + \cos \theta)$
- 15. Find the volume of the solid of cross sectional area A(x) = 2x from x = 0 to x = 2.
- 16. Evaluate  $\int_0^{\frac{\pi}{4}} \tan x \sec^2 x \, dx$ .

 $(7 \times 2 = 14)$ 

### **PART C**

# III. Answer any five of the following. Each question carries 6 marks

- 17. Using Maclaurin's series, obtain the expansion of  $\sin x$  and  $\sin^{-1}x$ .
- 18. Show that for any curve  $r = f(\theta)$  the curvature is given by  $\left(u + \frac{d^2u}{d\theta^2}\right) \sin^3 \emptyset$ , where  $u = \frac{1}{r}$ .
- 19. If v = 1/r and  $r^2 = x^2 + y^2$ . Prove that  $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{1}{r^3}$ .

- 20. Use the method of Legrange multipliers to find the maximum value of xy subject to the constraint 2x + 2y = 16
- 21. Find the area of the region in the first quadrant that is bounded above by  $y = \sqrt{x}$  and below by the x axis and the line y = x 2
- 22. Use shell method to find the volume of the solid generated by revolving the region bounded by y = 2x 1,  $y = \sqrt{x}$ , x = 0
- 23. Evaluate  $\int_0^1 \int_y^1 x^2 e^{xy} dx dy$
- 24. Use shell method to find the volume of the solid generated by revolving the region bounded by  $y = \frac{1}{x}$ , y = 0,  $x = \frac{1}{2}$ , x = 2

 $(5 \times 6 = 30)$ 

### PART D

# IV. Answer any two of the following. Each question carries 15 marks

- 25. (a) Find the  $n^{th}$  derivative of  $=\frac{x}{x^2+a^2}$ .
  - (b) Find the envelope of the curve  $\left(\frac{x}{a}\right)^m + \left(\frac{y}{b}\right)^m = 1$  when  $a^n + b^n = c^n$ .
- 26. (a) Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle  $x^2 + y^2 = 1$ . (b) Find and classify the local extreame values of  $f(x, y) = 3x^2 - 2y^3 - 3x^2 + 6xy$
- 27. The region bounded by the curve  $y = x^2 + 1$  and the line y = -x + 3 is revolved about the x axis to generate a solid. Find the volume of the solid.
- 28. Find the area of the surface generated by revolving  $y = \sqrt{x+1}$ , 1 x 5 about x axis. (2 x 15 = 30)