TB153150C	Reg. No:

Name:

B. Sc. DEGREE (C.B.C.S.S.) EXAMINATION, OCTOBER 2016 SEMESTER III - CORE COURSE (COMPUTER APPLICATION) CAM3B03TB - CALCULUS

Time: Three Hours Maximum Marks: 80

PART A

I. Answer all questions. Each question carries 1 mark

- 1. Find third differential coeffficient of y = cos(ax + b).
- 2. State Taylor's theorem
- 3. Define partial derivative with respect to x.
- 4. Define area of a closed bounded region R using a double integral.
- 5. Write the equation of a sphere of radius 5 with centre at origin, in spherical co-ordinates.
- 6. Define the volume of a closed bounded region D in space using triple integral.

 $(6 \times 1 = 6)$

PART B

II. Answer any seven of the following. Each question carries 2 marks

- 7. If $y = (\sin^{-1} x)^2$ Prove that $(1 x^2)y_2 xy_1 = 2$.
- 8. Expand sinhx using Maclaurin's theorem.
- Define Evolutes and Involutes.
- 10. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point (4, -5) if $f(x, y) = x^2 + 3xy + y 1$.
- 11. State second derivative test for Local extreme values.
- 12. Find $\left(\frac{\partial w}{\partial x}\right)_{y,z}$ if $w = x^2 + y z + sint$ and x + y = t.
- 13. Evaluate $\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} dx \, dz \, dy$.
- 14. Find the volume of the solid generated by revolving the region under the curve $y = \sqrt{x}$, between the lines x = 1 and x = 4, about the x axis.
- 15. Find the area of the region enclosed by the curve $x = y^2$ and the line x = y + 2, integrating with respect to y.
- 16. Evaluate $\int_0^1 t^3 (1+t^4)^3 dt$.

 $(7 \times 2 = 14)$

PART C

III. Answer any five of the following. Each question carries 6 marks

- 17. State and prove Leibnit'z theorem on the nth derivative of the product of two functions.
- 18. (a) Find $D^n(x^2e^x cos x)$
 - (b) Find the radius of curvature at the pole for the curve $r = a \sin n\theta$.
- 19. If $f(x,y) = x\cos y + ye^x$, find $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y\partial x}$, $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial x\partial y}$.
- 20. Find the maximum and minimum values of the function f(x,y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

1

P.T.O

- 21. The region bounded by the curve $y = \sqrt{4x x^2}$, the x axis, and the line x = 2 is revolved about the x axis to generate a solid. Find the volume of the solid.
- 22. Applying the surface area formula find the area of the surface generated by revolving the circle $x^2 + y^2 = a^2$, about the x axis
- 23. Use polar co-ordinates to evaluate $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} (x^2 + y^2) dy dx$
- 24. Find the length of the curve $y = x^{3/2}$ from x = 0 to x = 4.

 $(5 \times 6 = 30)$

PART D

IV. Answer any two of the following. Each question carries 15 marks

- 25. (a) If $y = \cos(m\sin^{-1}x)$. Show that $(1-x^2)y_{n+2} (2n+1)xy_{n+1} + (m^2-n^2)y_n = 0$.
 - (b) Find the evolute of the astroid $x = a\cos^3\theta$, $y = a\sin^3\theta$.
 - (c) Show that for the curve $s^2 = 8ay$, $\rho = 4a\sqrt{1 \frac{y}{2a}}$.
- 26. (a) Find the absolute maximum and minimum values of $f(x, y) = 2 + 2x + 2y x^2 y^2$
 - (b) Find $\frac{\partial w}{\partial x}$ at the point (x,y,z) = (2,-1,1) if $w = x^2 + y^2 + z^2$, $z^3xy + yz + y^3 = 1$.
 - (c) Find the local extreme values of the function $f(x,y) = xy x^2 y^2 2x 2y + 4$.
- 27. Find the length of the curve $y = (\frac{x}{2})^{2/3}$ from x = 0 to x = 2
- 28. The region bounded by the curve $y \equiv x^2 + 1$ and the line y = -x + 3 is revolved about the x axis to generate a solid. Find the volume of the solid.

 $(2 \times 15 = 30)$